predictWrapper | R Documentation |
This function predicts group membership and returns a numeric vector with results.
predictWrapper(
model,
dataSet,
functionNamePredict = "predict",
firstLevel = 1,
parameterNameObject = "object",
parameterNameData = "x",
dataFrameFlag = FALSE,
...
)
model |
A predictive model. Make sure to have loaded all required packages before starting this function |
dataSet |
A matrix or dataframe containing data, depending on what your predict function requires. Columns=features, rows=samples |
functionNamePredict |
The name of the prediction function. This only needs to be changed if the prediction function is not called predict |
firstLevel |
Numeric value of first level or group. Usually 1 but for glm such as in the example this needs to be 0. |
parameterNameObject |
The name of the parameter for passing the model to the prediction function |
parameterNameData |
The name of the parameter for passing the data to the prediction function |
dataFrameFlag |
Logical value indicating whether the data object is a data frame rather than a matrix. |
... |
Optional, additional parameters that will be passed to the prediction function. |
A numeric (integer) vector of predicted group memberships.
#First, define group membership and create the example feature data
group<-factor(c(rep("Group1",4),rep("Group2",5)))
names(group)<-paste("Sample",1:9,sep="")
dataset<-data.frame(
Feature1=c(5.1,5.0,6.0,2.9,4.8,4.6,4.9,3.8,5.1),
Feature2=c(2.6,4.0,3.2,1.2,3.1,2.1,4.5,6.1,1.3),
Feature3=c(3.1,6.1,5.8,5.1,3.8,6.1,3.4,4.0,4.4),
Feature4=c(5.3,5.2,3.1,2.7,3.2,2.8,5.9,5.8,3.1),
Feature5=c(3.2,4.4,4.8,4.9,6.0,3.6,6.1,3.9,3.5)
)
rownames(dataset)<-names(group)
#train a model - here we use a logit model instead of ANN as a demonstration
mod<-glm(group~Feature1+Feature2+Feature3+Feature4+Feature5,
data=data.frame(group=group,dataset),family="binomial")
predictWrapper(model=mod,dataSet=dataset,firstLevel=0,type="response")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.