Nothing
test_that("tidy.msm",{
psor.msm <- msm(state ~ months, subject=ptnum, data=psor, qmatrix = psor.q,
covariates = ~ollwsdrt+hieffusn,
constraint = list(hieffusn=c(1,1,1),ollwsdrt=c(1,1,2)))
x <- tidy(psor.msm)
expect_equal(x$estimate[x$parclass=="hr" & x$state==2 & x$term=="hieffusn"],
hazard.msm(psor.msm)$hieffusn[2,"HR"])
psor.msm <- msm(state ~ months, subject=ptnum, data=psor, qmatrix = psor.q)
x <- tidy(psor.msm)
expect_equal(x$conf.low[x$parclass=="intens" & x$state==2],
qmatrix.msm(psor.msm)[["L"]][2,3])
})
test_that("tidy.msm with covariates called baseline or Baseline",{
psor$baseline <- psor$logbaseline <- psor$ollwsdrt
psor.msm <- msm(state ~ months, subject=ptnum, data=psor, qmatrix = psor.q,
covariates = ~baseline)
x <- tidy(psor.msm)
expect_equal(x$estimate[x$parclass=="hr" & x$state==2 & x$term=="baseline"],
hazard.msm(psor.msm)$baseline[2,"HR"])
psor$Baseline <- psor$ollwsdrt
psor.msm <- msm(state ~ months, subject=ptnum, data=psor, qmatrix = psor.q,
covariates = ~Baseline)
psor.msm
x <- tidy(psor.msm)
expect_equal(x$estimate[x$parclass=="hr" & x$state==2 & x$term=="Baseline"],
hazard.msm(psor.msm)$Baseline[2,"HR"])
})
test_that("tidy.msm with misclassification models",{
misccov.msm <- msm(state ~ years, subject = PTNUM, data = cav,
qmatrix = oneway4.q, ematrix=ematrix, deathexact = 4, fixedpars=TRUE,
misccovariates = ~dage + sex,
misccovinits = list(dage=c(0.01,0.02,0.03,0.04),
sex=c(-0.013,-0.014,-0.015,-0.016)))
x <- tidy(misccov.msm)
expect_equal(x$estimate[x$parclass=="misc" & x$state==2 & x$tostate==1],
ematrix.msm(misccov.msm)[2,1][["estimate"]])
misccov.msm <- suppressWarnings(msm(state ~ years, subject = PTNUM, data = cav[1:500,],
qmatrix = oneway4.q, ematrix=ematrix,
deathexact = 4, fixedpars=FALSE, control=list(maxit=20),
misccovariates = ~dage + sex))
x <- tidy(misccov.msm)
expect_equal(x$conf.high[x$parclass=="misc" & x$state==2 & x$tostate==1],
ematrix.msm(misccov.msm)[["U"]][2,1])
x <- ematrix.msm(misccov.msm)
tx <- tidy(x)
expect_equal(tx$conf.high[tx$state==3 & tx$tostate==2], x[["U"]][3,2])
x <- ematrix.msm(misccov.msm, ci="none")
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3 & tx$tostate==2], x[3,2])
})
psor.msm <- msm(state ~ months, subject=ptnum, data=psor, qmatrix = psor.q,
covariates = ~ollwsdrt+hieffusn,
constraint = list(hieffusn=c(1,1,1),ollwsdrt=c(1,1,2)))
test_that("Tidying extractor function output",{
x <- qmatrix.msm(psor.msm)
tx <- tidy(x)
expect_equal(tx$conf.low[tx$state==3], x[["L"]][3,4])
x <- qmatrix.msm(psor.msm, ci="none")
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3], x[3,4])
x <- pmatrix.msm(psor.msm)
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3 & tx$tostate==4], x[3,4])
x <- pmatrix.msm(psor.msm, ci="normal", B=10)
tx <- tidy(x)
expect_equal(tx$conf.low[tx$state==3 & tx$tostate==4], x[["L"]][3,4])
x <- pnext.msm(psor.msm)
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3 & tx$tostate==4], x[["estimates"]][3,4])
x <- pnext.msm(psor.msm, ci="none")
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3 & tx$tostate==4], x[["estimates"]][3,4])
x <- ppass.msm(psor.msm, tot=3)
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3 & tx$tostate==4], x[3,4])
x <- ppass.msm(psor.msm, tot=3, ci="normal", B=10)
tx <- tidy(x)
expect_equal(tx$conf.low[tx$state==3 & tx$tostate==4], x[["L"]][3,4])
})
test_that("tidy for HMMs",{
three.q <- rbind(c(0, exp(-6), exp(-9)), c(0, 0, exp(-6)), c(0, 0, 0))
hmodel3 <- list(hmmNorm(mean=100, sd=16), hmmNorm(mean=54, sd=18), hmmIdent(999))
fev3.hid <- msm(fev ~ days, subject=ptnum, data=fev[1:1000,],
qmatrix=three.q,
deathexact=3, hmodel=hmodel3,
hcovariates=list(~acute, ~acute, NULL), hcovinits = list(-8, -8, NULL),
fixedpars=FALSE, center=FALSE)
tx <- tidy(fev3.hid)
expect_equal(tx$estimate[tx$parclass=="hmm" & tx$state==2 & tx$term=="mean"],
fev3.hid$hmodel$pars[[3]])
expect_equal(tx$conf.high[tx$parclass=="hmm" & tx$state==2 & tx$term=="sd"],
fev3.hid$hmodel$ci[4,][2])
# initprobs
fev3.hid <- suppressWarnings(msm(fev ~ days, subject=ptnum, data=fev[1:2000,],
qmatrix=three.q, deathexact=3, hmodel=hmodel3,
est.initprobs = TRUE, control=list(maxit=10)))
tx <- tidy(fev3.hid)
expect_equal(tx$estimate[tx$parclass=="initp" & tx$state==2],
fev3.hid$hmodel$initprobs["State 2","Estimate"])
expect_equal(tx$conf.low[tx$parclass=="initp" & tx$state==2],
fev3.hid$hmodel$initprobs["State 2","LCL"])
# initcovariates
fev3.hid <- suppressWarnings(msm(fev ~ days, subject=ptnum, data=fev[1:3000,],
qmatrix=three.q, exacttimes=TRUE,
deathexact=3, hmodel=hmodel3, initcovariates = ~acute,
est.initprobs = TRUE, control=list(maxit=100)))
tx <- tidy(fev3.hid)
expect_equal(tx$estimate[tx$parclass=="initpcov" & tx$state==2],
fev3.hid$hmodel$icoveffect[[1]])
})
test_that("tidy prevalence.msm",{
x <- prevalence.msm(psor.msm)
tx <- tidy(x)
expect_equal(tx$expected[tx$output=="count" & tx$time==tx$time[8] & tx$state==2],
x$Expected[8,"State 2"])
x <- prevalence.msm(psor.msm, ci="normal", B=3)
tx <- tidy(x)
expect_equal(tx$conf.high[tx$output=="count" & tx$time==tx$time[8] & tx$state==2],
unname(x$Expected$ci[8,2,"97.5%"]))
})
test_that("tidy totlos.msm",{
x <- totlos.msm(psor.msm)
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3], x[["State 3"]])
x <- totlos.msm(psor.msm, ci="normal", B=3)
tx <- tidy(x)
expect_equal(tx$conf.high[tx$state==3], x["97.5%",][["State 3"]])
x <- efpt.msm(psor.msm, tostate = 3)
tx <- tidy(x)
expect_equal(x[3], tx$estimate[tx$state==3])
x <- efpt.msm(psor.msm, tostate = 3, ci="normal", B=3)
tx <- tidy(x)
expect_equal(unname(x[3,2]), tx$conf.high[tx$state==2])
x <- envisits.msm(psor.msm)
tx <- tidy(x)
expect_equal(tx$estimate[tx$state==3], x[["State 3"]])
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.