Nothing
set.seed(1234)
n <- 50000
nreps <- 10
# SEPARATE BIAS PARAMETERS
# 0 confounders
nobias_model <- glm(
Y ~ X,
family = binomial(link = "logit"),
data = df_em_om_source
)
x_model <- glm(
X ~ Xstar + Ystar,
family = binomial(link = "logit"),
data = df_em_om_source
)
y_model <- glm(
Y ~ X + Ystar,
family = binomial(link = "logit"),
data = df_em_om_source
)
df_observed <- data_observed(
df_em_om,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = NULL
)
list_for_em_om <- list(
x = as.vector(coef(x_model)),
y = as.vector(coef(y_model))
)
bp_em_om <- bias_params(coef_list = list_for_em_om)
single_run <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_em_om[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = NULL
)
results <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# 3 confounders
nobias_model <- glm(
Y ~ X + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_em_om_source
)
x_model <- glm(
X ~ Xstar + Ystar + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_em_om_source
)
y_model <- glm(
Y ~ X + Ystar + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_em_om_source
)
df_observed <- data_observed(
df_em_om,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
list_for_em_om <- list(
x = as.vector(coef(x_model)),
y = as.vector(coef(y_model))
)
bp_em_om <- bias_params(coef_list = list_for_em_om)
single_run <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_em_om[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
results <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# MULTINOMIAL BIAS PARAMETERS
# library(nnet)
set.seed(1234)
n <- 10000
nreps <- 10
# 0 confounders
nobias_model <- glm(
Y ~ X,
family = binomial(link = "logit"),
data = df_em_om_source
)
# xy_model <- multinom(
# paste(X, Y) ~ Xstar + Ystar,
# data = df_em_om_source
# )
# summary(xy_model)
df_observed <- data_observed(
df_em_om,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = NULL
)
list_for_em_om <- list(
x1y0 = c(-1.99, 1.62, 0.23),
x0y1 = c(-2.96, 0.22, 1.60),
x1y1 = c(-4.36, 1.82, 1.82)
)
bp_em_om <- bias_params(coef_list = list_for_em_om)
single_run <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_em_om[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = NULL
)
results <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("0 confounders: odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# 3 confounders
nobias_model <- glm(
Y ~ X + C1 + C2 + C3,
family = binomial(link = "logit"),
data = df_em_om_source
)
# xy_model <- multinom(
# paste(X, Y) ~ Xstar + Ystar + C1 + C2 + C3,
# data = df_em_om_source
# )
# summary(xy_model)
df_observed <- data_observed(
df_em_om,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
list_for_em_om <- list(
x1y0 = c(-2.86, 1.63, 0.23, 0.37, -0.22, 0.87),
x0y1 = c(-3.26, 0.22, 1.60, 0.41, -0.93, 0.28),
x1y1 = c(-5.62, 1.83, 1.83, 0.74, -1.15, 1.19)
)
bp_em_om <- bias_params(coef_list = list_for_em_om)
single_run <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est <- vector()
for (i in 1:nreps) {
bdf <- df_em_om[sample(seq_len(n), n, replace = TRUE), ]
df_observed <- data_observed(
bdf,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
)
results <- adjust_em_om(
df_observed,
bias_params = bp_em_om
)
est[i] <- results$estimate
}
or_true <- exp(summary(nobias_model)$coef[2, 1])
or_adjusted <- median(est)
test_that("3 confounders: odds ratio and confidence interval output", {
expect_gt(or_adjusted, or_true - 0.1)
expect_lt(or_adjusted, or_true + 0.1)
expect_vector(
single_run$ci,
ptype = double(),
size = 2
)
})
# adjust with validation data
or_val <- adjust_em_om(
data_observed = data_observed(
df_em_om,
bias = c("em", "om"),
exposure = "Xstar",
outcome = "Ystar",
confounders = c("C1", "C2", "C3")
),
data_validation = data_validation(
df_em_om_source,
true_exposure = "X",
true_outcome = "Y",
confounders = c("C1", "C2", "C3"),
misclassified_exposure = "Xstar",
misclassified_outcome = "Ystar"
)
)
test_that("adjust_em_om, validation data", {
expect_gt(or_val$estimate, or_true - 0.1)
expect_lt(or_val$estimate, or_true + 0.1)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.