unsupervised | R Documentation |
Collection of unsupervised multiblock methods:
SCA - Simultaneous Component Analysis (sca
)
GCA - Generalized Canonical Analysis (gca
)
GPA - Generalized Procrustes Analysis (gpa
)
MFA - Multiple Factor Analysis (mfa
)
PCA-GCA (pcagca
)
DISCO - Distinctive and Common Components with SCA (disco
)
HPCA - Hierarchical Principal component analysis (hpca
)
MCOA - Multiple Co-Inertia Analysis (mcoa
)
JIVE - Joint and Individual Variation Explained (jive
)
STATIS - Structuration des Tableaux à Trois Indices de la Statistique (statis
)
HOGSVD - Higher Order Generalized SVD (hogsvd
)
Original documentation of STATIS: statis. JIVE, STATIS and HOGSVD assume variable linked matrices/data.frames, while SCA handles both links.
Overviews of available methods, multiblock
, and methods organised by main structure: basic
, unsupervised
, asca
, supervised
and complex
.
Common functions for computation and extraction of results and plotting are found in multiblock_results
and multiblock_plots
, respectively.
# Object linked data
data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.sca <- sca(potList)
# Variable linked data
data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
can.statis <- statis(candyList)
plot(can.statis$statis)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.