Description Usage Arguments Value References See Also Examples
Multigroup PLS regression
| 1 2 3 4 5 6 7 8 9 | 
| DataX | a numeric matrix or data frame associated with independent dataset | 
| DataY | a numeric matrix or data frame associated with dependent dataset | 
| Group | a vector of factors associated with group structure | 
| ncomp | number of components, if NULL number of components is equal to 2 | 
| Scale | scaling variables, by defalt is FALSE. By default data are centered within groups | 
| Gcenter | global variables centering, by defalt is FALSE. | 
| Gscale | global variables scaling, by defalt is FALSE. | 
list with the following results:
| DataXm | Group X data | 
| DataYm | Group Y data | 
| Concat.X | Concatenated X data | 
| Concat.Y | Concatenated Y data | 
| coefficients | Coefficients associated with X data | 
| coefficients.Y | Coefficients associated with regressing Y on Global components X | 
| Components.Global | Conctenated Components for X and Y | 
| Components.Group | Components associated with groups in X and Y | 
| loadings.common | Common vector of loadings for X and Y | 
| loadings.Group | Group vector of loadings for X and Y | 
| expvar | Explained variance associated with global components X | 
| cum.expvar.Group | Cumulative explained varaince in groups of X and Y | 
| Similarity.Common.Group.load | Cumulative similarity between group and common loadings | 
| Similarity.noncum.Common.Group.load | NonCumulative similarity between group and common loadings | 
A. Eslami, E. M. Qannari, A. Kohler and S. Bougeard (2013). Multi-group PLS regressMathematics and Statistics, Springer Proceedings (ed), New Perspectives in Partial Least Squares and Related Methods, 56, 243-255.
A. Eslami, E. M. Qannari, A. Kohler and S. Bougeard (2014). Algorithms for multi-group PLS. Journal of Chemometrics, 28(3), 192-201.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | data(oliveoil)
DataX = oliveoil[,2:6]
DataY = oliveoil[,7:12]
Group = as.factor(oliveoil[,1])
res.mgPLS = mgPLS (DataX, DataY, Group)
barplot(res.mgPLS$noncumper.inertiglobal)
#----- Regression coefficients 
#res.mgPLS$coefficients[[2]]
#----- Similarity index: group loadings are compared to the common structure (in  X and Y spaces)
XX1= res.mgPLS$Similarity.noncum.Common.Group.load$X[[1]][-1, 1, drop=FALSE]
XX2=res.mgPLS$Similarity.noncum.Common.Group.load$X[[2]][-1, 1, drop=FALSE]
simX <- cbind(XX1, XX2)
YY1=res.mgPLS$Similarity.noncum.Common.Group.load$Y[[1]][-1, 1, drop=FALSE]
YY2=res.mgPLS$Similarity.noncum.Common.Group.load$Y[[2]][-1, 1, drop=FALSE]
simY <- cbind(YY1,YY2)
XLAB = paste("Dim1, %",res.mgPLS$noncumper.inertiglobal[1])
YLAB = paste("Dim1, %",res.mgPLS$noncumper.inertiglobal[2])
plot(simX[, 1], simX[, 2], pch=15, xlim=c(0, 1), ylim=c(0, 1),
                            main="Similarity indices in X space",
                            xlab=XLAB, ylab=YLAB)
abline(h=seq(0, 1, by=0.2), col="black", lty=3)
text(simX[, 1], simX[, 2], labels=rownames(simX), pos=2)
plot(simY[, 1], simY[, 2], pch=15, xlim=c(0, 1), ylim=c(0, 1), 
                             main="Similarity indices in Y space",
                                       xlab=XLAB, ylab=YLAB)
abline(h=seq(0, 1, by=0.2), col="black", lty=3)
text(simY[, 1], simY[, 2], labels=rownames(simY), pos=2)
 | 



Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.