Nothing
# Generated by vignette example_transfusion.Rmd: do not edit by hand
# Instead edit example_transfusion.Rmd and then run precompile.R
skip_on_cran()
params <-
list(run_tests = FALSE)
## ----code=readLines("children/knitr_setup.R"), include=FALSE--------------------------------------
## ----include=FALSE--------------------------------------------------------------------------------
set.seed(2684319)
## ----eval = FALSE---------------------------------------------------------------------------------
## library(multinma)
## options(mc.cores = parallel::detectCores())
## ----setup, echo = FALSE--------------------------------------------------------------------------
library(multinma)
nc <- switch(tolower(Sys.getenv("_R_CHECK_LIMIT_CORES_")),
"true" =, "warn" = 2,
parallel::detectCores())
options(mc.cores = nc)
## -------------------------------------------------------------------------------------------------
head(transfusion)
## -------------------------------------------------------------------------------------------------
tr_net <- set_agd_arm(transfusion,
study = studyc,
trt = trtc,
r = r,
n = n,
trt_ref = "Control")
tr_net
## -------------------------------------------------------------------------------------------------
summary(normal(scale = 100))
summary(half_normal(scale = 5))
## ----eval=FALSE, echo=TRUE------------------------------------------------------------------------
## tr_fit_RE_noninf <- nma(tr_net,
## trt_effects = "random",
## prior_intercept = normal(scale = 100),
## prior_trt = normal(scale = 100),
## prior_het = half_normal(scale = 5))
## ----echo=FALSE, eval=!params$run_tests-----------------------------------------------------------
## tr_fit_RE_noninf <- nma(tr_net,
## seed = 857369814,
## trt_effects = "random",
## prior_intercept = normal(scale = 100),
## prior_trt = normal(scale = 100),
## prior_het = half_normal(scale = 5))
## ----echo=FALSE, eval=params$run_tests------------------------------------------------------------
tr_fit_RE_noninf <- suppressWarnings(nma(tr_net,
seed = 857369814,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = half_normal(scale = 5),
iter = 10000,
save_warmup = FALSE))
## -------------------------------------------------------------------------------------------------
tr_fit_RE_noninf
## ----eval=FALSE-----------------------------------------------------------------------------------
## # Not run
## print(tr_fit_RE_noninf, pars = c("d", "mu", "delta"))
## ----tr_RE_noninf_pp_plot-------------------------------------------------------------------------
plot_prior_posterior(tr_fit_RE_noninf, prior = "het")
## -------------------------------------------------------------------------------------------------
noninf_tau <- as.array(tr_fit_RE_noninf, pars = "tau")
noninf_tausq <- noninf_tau^2
names(noninf_tausq) <- "tausq"
summary(noninf_tausq)
## -------------------------------------------------------------------------------------------------
summary(log_normal(-3.93, 1.51))
## ----echo=TRUE, eval=FALSE------------------------------------------------------------------------
## tr_fit_RE_inf <- nma(tr_net,
## trt_effects = "random",
## prior_intercept = normal(scale = 100),
## prior_trt = normal(scale = 100),
## prior_het = log_normal(-3.93, 1.51),
## prior_het_type = "var")
## ----echo=FALSE, eval=!params$run_tests-----------------------------------------------------------
## tr_fit_RE_inf <- nma(tr_net,
## seed = 1803772660,
## trt_effects = "random",
## prior_intercept = normal(scale = 100),
## prior_trt = normal(scale = 100),
## prior_het = log_normal(-3.93, 1.51),
## prior_het_type = "var")
## ----echo=FALSE, eval=params$run_tests------------------------------------------------------------
tr_fit_RE_inf <- suppressWarnings(nma(tr_net,
seed = 1803772660,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = log_normal(-3.93, 1.51),
prior_het_type = "var",
iter = 10000, save_warmup = FALSE))
## -------------------------------------------------------------------------------------------------
tr_fit_RE_inf
## ----eval=FALSE-----------------------------------------------------------------------------------
## # Not run
## print(tr_fit_RE_inf, pars = c("d", "mu", "delta"))
## ----tr_RE_inf_pp_plot----------------------------------------------------------------------------
plot_prior_posterior(tr_fit_RE_inf, prior = "het")
## -------------------------------------------------------------------------------------------------
inf_tau <- as.array(tr_fit_RE_inf, pars = "tau")
inf_tausq <- inf_tau^2
names(inf_tausq) <- "tausq"
summary(inf_tausq)
## ----transfusion_tests, include=FALSE, eval=params$run_tests--------------------------------------
#--- Test against TSD 2 results ---
library(testthat)
tol <- 0.05
# Non-informative prior
tr_RE_noninf_var <- as.data.frame(summary(noninf_tausq))
test_that("Non-informative RE heterogeneity variance", {
skip("Non-informative priors not identical")
expect_equivalent(tr_RE_noninf_var$`50%`, 2.74, tolerance = tol)
expect_equivalent(tr_RE_noninf_var$`2.5%`, 0.34, tolerance = tol)
expect_equivalent(tr_RE_noninf_var$`97.5%`, 18.1, tolerance = tol)
})
# Informative prior
tr_RE_inf_var <- as.data.frame(summary(inf_tausq))
test_that("Informative RE heterogeneity variance", {
expect_equivalent(tr_RE_inf_var$`50%`, 0.18, tolerance = tol)
expect_equivalent(tr_RE_inf_var$`2.5%`, 0.003, tolerance = tol)
skip_on_ci()
expect_equivalent(tr_RE_inf_var$`97.5%`, 1.84, tolerance = tol)
})
# Force clean up
rm(list = ls())
gc()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.