Description Usage Arguments Details Value Warnings Computational Details Note Author(s) References Examples
Fits Timmerman and Kiers's four Simultaneous Component Analysis (SCA) models to a 3-way data array or a list of 2-way arrays with the same number of columns.
1 2 3 4 |
X |
List of length |
nfac |
Number of factors. |
nstart |
Number of random starts. |
maxit |
Maximum number of iterations. |
type |
Type of SCA model to fit. |
rotation |
Rotation to use for |
ctol |
Convergence tolerance. |
parallel |
Logical indicating if |
cl |
Cluster created by |
verbose |
If |
Given a list of matrices X[[k]] = matrix(xk,I[k],J)
for k = seq(1,K)
, the SCA model is
X[[k]] = tcrossprod(D[[k]],B) + E[[k]] |
where D[[k]] = matrix(dk,I[k],R)
are the Mode A (first mode) weights for the k
-th level of Mode C (third mode), B = matrix(b,J,R)
are the Mode B (second mode) weights, and E[[k]] = matrix(ek,I[k],J)
is the residual matrix corresponding to k
-th level of Mode C.
There are four different versions of the SCA model: SCA with invariant pattern (SCA-P), SCA with Parafac2 constraints (SCA-PF2), SCA with INDSCAL constraints (SCA-IND), and SCA with equal average crossproducts (SCA-ECP). These four models differ with respect to the assumed crossproduct structure of the D[[k]]
weights:
SCA-P: | crossprod(D[[k]])/I[k] = Phi[[k]] |
|
SCA-PF2: | crossprod(D[[k]])/I[k] = diag(C[k,])%*%Phi%*%diag(C[k,]) |
|
SCA-IND: | crossprod(D[[k]])/I[k] = diag(C[k,]*C[k,]) |
|
SCA-ECP: | crossprod(D[[k]])/I[k] = Phi |
|
where Phi[[k]]
is specific to the k
-th level of Mode C, Phi
is common to all K
levels of Mode C, and C = matrix(c,K,R)
are the Mode C (third mode) weights. This function estimates the weight matrices D[[k]]
and B
(and C
if applicable) using alternating least squares.
D |
List of length |
B |
Mode B weight matrix. |
C |
Mode C weight matrix. |
Phi |
Mode A common crossproduct matrix (if |
SSE |
Sum of Squared Errors. |
Rsq |
R-squared value. |
GCV |
Generalized Cross-Validation. |
edf |
Effective degrees of freedom. |
iter |
Number of iterations. |
cflag |
Convergence flag. |
type |
Same as input |
rotation |
Same as input |
The ALS algorithm can perform poorly if the number of factors nfac
is set too large.
The least squares SCA-P solution can be obtained from the singular value decomposition of the stacked matrix rbind(X[[1]],...,X[[K]])
.
The least squares SCA-PF2 solution can be obtained using the uncontrained Parafac2 ALS algorithm (see parafac2
).
The least squares SCA-IND solution can be obtained using the Parafac2 ALS algorithm with orthogonality constraints on Mode A.
The least squares SCA-ECP solution can be obtained using the Parafac2 ALS algorithm with orthogonality constraints on Mode A and the Mode C weights fixed at C[k,] = rep(I[k]^0.5,R)
.
Default use is 10 random strarts (nstart=10
) with 500 maximum iterations of the ALS algorithm for each start (maxit=500
) using a convergence tolerance of 1e-4 (ctol=1e-4
). The algorithm is determined to have converged once the change in R^2 is less than or equal to ctol
.
Output cflag
gives convergence information: cflag=0
if ALS algorithm converged normally, cflag=1
if maximum iteration limit was reached before convergence, and cflag=2
if ALS algorithm terminated abnormally due to problem with non-negativity constraints.
Nathaniel E. Helwig <helwig@umn.edu>
Helwig, N. E. (2013). The special sign indeterminacy of the direct-fitting Parafac2 model: Some implications, cautions, and recommendations, for Simultaneous Component Analysis. Psychometrika, 78, 725-739.
Timmerman, M. E., & Kiers, H. A. L. (2003). Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika, 68, 105-121.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | ########## sca-p ##########
# create random data list with SCA-P structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Dmat <- matrix(rnorm(sum(nk)*nf),sum(nk),nf)
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Dmats <- vector("list",mydim[3])
Xmat <- Emat <- vector("list",mydim[3])
dfc <- 0
for(k in 1:mydim[3]){
dinds <- 1:nk[k] + dfc
Dmats[[k]] <- Dmat[dinds,]
dfc <- dfc + nk[k]
Xmat[[k]] <- tcrossprod(Dmats[[k]],Bmat)
Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
rm(Dmat)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- mapply("+",Xmat,Emat)
# fit SCA-P model (no rotation)
scamod <- sca(X,nfac=nf,nstart=1)
scamod
# check solution
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(1,-1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="C")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
########## sca-pf2 ##########
# create random data list with SCA-PF2 (Parafac2) structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- 10*matrix(rnorm(nf^2),nf,nf)
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- matrix(runif(mydim[3]*nf),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- mapply("+",Xmat,Emat)
# fit SCA-PF2 model
scamod <- sca(X,nfac=nf,nstart=1,type="sca-pf2")
scamod
# check solution
scamod$Phi
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(1,-1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="C")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
########## sca-ind ##########
# create random data list with SCA-IND structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- diag(nf) # SCA-IND is Parafac2 with Gmat=identity
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- 10*matrix(runif(mydim[3]*nf),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- mapply("+",Xmat,Emat)
# fit SCA-IND model
scamod <- sca(X,nfac=nf,nstart=1,type="sca-ind")
scamod
# check solution
scamod$Phi
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(1,-1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="C")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
########## sca-ecp ##########
# create random data list with SCA-ECP structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- diag(nf)
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- matrix(sqrt(nk),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- mapply("+",Xmat,Emat)
# fit SCA-ECP model
scamod <- sca(X,nfac=nf,nstart=1,type="sca-ecp")
scamod
# check solution
scamod$Phi
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(-1,1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="B")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])
## Not run:
########## parallel computation ##########
# create random data list with SCA-IND structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- diag(nf) # SCA-IND is Parafac2 with Gmat=identity
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- 10*matrix(runif(mydim[3]*nf),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- mapply("+",Xmat,Emat)
# fit SCA-PF2 model (10 random starts -- sequential computation)
set.seed(1)
system.time({scamod <- sca(X,nfac=nf,type="sca-pf2")})
scamod
# fit SCA-PF2 model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({scamod <- sca(X,nfac=nf,type="sca-pf2",parallel=TRUE,cl=cl)})
scamod
stopCluster(cl)
# fit SCA-IND model (10 random starts -- sequential computation)
set.seed(1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ind")})
scamod
# fit SCA-IND model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ind",parallel=TRUE,cl=cl)})
scamod
stopCluster(cl)
# fit SCA-ECP model (10 random starts -- sequential computation)
set.seed(1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ecp")})
scamod
# fit SCA-ECP model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ecp",parallel=TRUE,cl=cl)})
scamod
stopCluster(cl)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.