Description Usage Arguments Details Value Warnings Note Author(s) References Examples
Fits Ledyard R. Tucker's factor analysis model to 3-way or 4-way data arrays. Parameters are estimated via alternating least squares.
1 2 3 4 5 |
X |
Three-way data array with |
nfac |
Number of factors in each mode. |
nstart |
Number of random starts. |
Afixed |
Fixed Mode A weights. Only used to fit model with fixed weights in Mode A. |
Bfixed |
Fixed Mode B weights. Only used to fit model with fixed weights in Mode B. |
Cfixed |
Fixed Mode C weights. Only used to fit model with fixed weights in Mode C. |
Dfixed |
Fixed Mode D weights. Only used to fit model with fixed weights in Mode D. |
Bstart |
Starting Mode B weights for ALS algorithm. Default uses random weights. |
Cstart |
Starting Mode C weights for ALS algorithm. Default uses random weights. |
Dstart |
Starting Mode D weights for ALS algorithm. Default uses random weights. |
maxit |
Maximum number of iterations. |
ctol |
Convergence tolerance. |
parallel |
Logical indicating if |
cl |
Cluster created by |
output |
Output the best solution (default) or output all |
verbose |
If |
Given a 3-way array X = array(x,dim=c(I,J,K))
, the 3-way Tucker model can be written as
X[i,j,k] = sum sum sum A[i,p]*B[j,q]*C[k,r]*G[p,q,r] + E[i,j,k]
|
where A = matrix(a,I,P)
are the Mode A (first mode) weights, B = matrix(b,J,Q)
are the Mode B (second mode) weights, C = matrix(c,K,R)
are the Mode C (third mode) weights, G = array(g,dim=c(P,Q,R))
is the 3-way core array, and E = array(e,dim=c(I,J,K))
is the 3-way residual array. The summations are for p = seq(1,P)
, q = seq(1,Q)
, and r = seq(1,R)
.
Given a 4-way array X = array(x,dim=c(I,J,K,L))
, the 4-way Tucker model can be written as
X[i,j,k,l] = sum sum sum sum A[i,p]*B[j,q]*C[k,r]*D[l,s]*G[p,q,r,s] + E[i,j,k,l]
|
where D = matrix(d,L,S)
are the Mode D (fourth mode) weights, G = array(g,dim=c(P,Q,R,S))
is the 4-way residual array, E = array(e,dim=c(I,J,K,L))
is the 4-way residual array, and the other terms can be interprered as previously described.
Weight matrices are estimated using an alternating least squares algorithm.
If output="best"
, returns an object of class "tucker"
with the following elements:
A |
Mode A weight matrix. |
B |
Mode B weight matrix. |
C |
Mode C weight matrix. |
D |
Mode D weight matrix. |
G |
Core array. |
SSE |
Sum of Squared Errors. |
Rsq |
R-squared value. |
GCV |
Generalized Cross-Validation. |
edf |
Effective degrees of freedom. |
iter |
Number of iterations. |
cflag |
Convergence flag. |
Otherwise returns a list of length nstart
where each element is an object of class "tucker"
.
The ALS algorithm can perform poorly if the number of factors nfac
is set too large.
Input matrices in Afixed
, Bfixed
, Cfixed
, Dfixed
, Bstart
, Cstart
, and Dstart
must be columnwise orthonormal.
Default use is 10 random strarts (nstart=10
) with 500 maximum iterations of the ALS algorithm for each start (maxit=500
) using a convergence tolerance of 1e-4 (ctol=1e-4
). The algorithm is determined to have converged once the change in R^2 is less than or equal to ctol
.
Output cflag
gives convergence information: cflag=0
if ALS algorithm converged normally, and cflag=1
if maximum iteration limit was reached before convergence.
Missing data should be specified as NA
values in the input X
. The missing data are randomly initialized and then iteratively imputed as a part of the ALS algorithm.
Nathaniel E. Helwig <helwig@umn.edu>
Kroonenberg, P. M., & de Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 69-97.
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279-311.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | ########## 3-way example ##########
####****#### TUCKER3 ####****####
# create random data array with Tucker3 structure
set.seed(3)
mydim <- c(50,20,5)
nf <- c(3,2,3)
Amat <- matrix(rnorm(mydim[1]*nf[1]), mydim[1], nf[1])
Amat <- svd(Amat, nu = nf[1], nv = 0)$u
Bmat <- matrix(rnorm(mydim[2]*nf[2]), mydim[2], nf[2])
Bmat <- svd(Bmat, nu = nf[2], nv = 0)$u
Cmat <- matrix(rnorm(mydim[3]*nf[3]), mydim[3], nf[3])
Cmat <- svd(Cmat, nu = nf[3], nv = 0)$u
Gmat <- matrix(rnorm(prod(nf)), nf[1], prod(nf[2:3]))
Xmat <- tcrossprod(Amat %*% Gmat, kronecker(Cmat, Bmat))
Xmat <- array(Xmat, dim = mydim)
Emat <- array(rnorm(prod(mydim)), dim = mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- Xmat + Emat
# fit Tucker3 model
tuck <- tucker(X, nfac = nf, nstart = 1)
tuck
# check solution
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2) / prod(mydim)
# reorder mode="A"
tuck$A[1:4,]
tuck$G
tuck <- reorder(tuck, neworder = c(3,1,2), mode = "A")
tuck$A[1:4,]
tuck$G
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2)/prod(mydim)
# reorder mode="B"
tuck$B[1:4,]
tuck$G
tuck <- reorder(tuck, neworder=2:1, mode="B")
tuck$B[1:4,]
tuck$G
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2)/prod(mydim)
# resign mode="C"
tuck$C[1:4,]
tuck <- resign(tuck, mode="C")
tuck$C[1:4,]
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2)/prod(mydim)
####****#### TUCKER2 ####****####
# create random data array with Tucker2 structure
set.seed(3)
mydim <- c(50, 20, 5)
nf <- c(3, 2, mydim[3])
Amat <- matrix(rnorm(mydim[1]*nf[1]), mydim[1], nf[1])
Amat <- svd(Amat, nu = nf[1], nv = 0)$u
Bmat <- matrix(rnorm(mydim[2]*nf[2]), mydim[2], nf[2])
Bmat <- svd(Bmat, nu = nf[2], nv = 0)$u
Cmat <- diag(nf[3])
Gmat <- matrix(rnorm(prod(nf)), nf[1], prod(nf[2:3]))
Xmat <- tcrossprod(Amat %*% Gmat, kronecker(Cmat, Bmat))
Xmat <- array(Xmat, dim = mydim)
Emat <- array(rnorm(prod(mydim)), dim = mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- Xmat + Emat
# fit Tucker2 model
tuck <- tucker(X, nfac = nf, nstart = 1, Cfixed = diag(nf[3]))
tuck
# check solution
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2) / prod(mydim)
####****#### TUCKER1 ####****####
# create random data array with Tucker1 structure
set.seed(3)
mydim <- c(50, 20, 5)
nf <- c(3, mydim[2:3])
Amat <- matrix(rnorm(mydim[1]*nf[1]), mydim[1], nf[1])
Amat <- svd(Amat, nu = nf[1], nv = 0)$u
Bmat <- diag(nf[2])
Cmat <- diag(nf[3])
Gmat <- matrix(rnorm(prod(nf)), nf[1], prod(nf[2:3]))
Xmat <- tcrossprod(Amat %*% Gmat, kronecker(Cmat, Bmat))
Xmat <- array(Xmat, dim = mydim)
Emat <- array(rnorm(prod(mydim)), dim = mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- Xmat + Emat
# fit Tucker1 model
tuck <- tucker(X, nfac = nf, nstart = 1,
Bfixed = diag(nf[2]), Cfixed = diag(nf[3]))
tuck
# check solution
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2) / prod(mydim)
# closed-form Tucker1 solution via SVD
tsvd <- svd(matrix(X, nrow = mydim[1]), nu = nf[1], nv = nf[1])
Gmat0 <- t(tsvd$v %*% diag(tsvd$d[1:nf[1]]))
Xhat0 <- array(tsvd$u %*% Gmat0, dim = mydim)
sum((Xmat-Xhat0)^2) / prod(mydim)
# get Mode A weights and core array
tuck0 <- NULL
tuck0$A <- tsvd$u # A weights
tuck0$G <- array(Gmat0, dim = nf) # core array
########## 4-way example ##########
# create random data array with Tucker structure
set.seed(4)
mydim <- c(30,10,8,10)
nf <- c(2,3,4,3)
Amat <- svd(matrix(rnorm(mydim[1]*nf[1]),mydim[1],nf[1]),nu=nf[1])$u
Bmat <- svd(matrix(rnorm(mydim[2]*nf[2]),mydim[2],nf[2]),nu=nf[2])$u
Cmat <- svd(matrix(rnorm(mydim[3]*nf[3]),mydim[3],nf[3]),nu=nf[3])$u
Dmat <- svd(matrix(rnorm(mydim[4]*nf[4]),mydim[4],nf[4]),nu=nf[4])$u
Gmat <- array(rnorm(prod(nf)),dim=nf)
Xmat <- array(tcrossprod(Amat%*%matrix(Gmat,nf[1],prod(nf[2:4])),
kronecker(Dmat,kronecker(Cmat,Bmat))),dim=mydim)
Emat <- array(rnorm(prod(mydim)),dim=mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- Xmat + Emat
# fit Tucker model
tuck <- tucker(X,nfac=nf,nstart=1)
tuck
# check solution
Xhat <- fitted(tuck)
sum((Xmat-Xhat)^2)/prod(mydim)
## Not run:
########## parallel computation ##########
# create random data array with Tucker structure
set.seed(3)
mydim <- c(50,20,5)
nf <- c(3,2,3)
Amat <- svd(matrix(rnorm(mydim[1]*nf[1]),mydim[1],nf[1]),nu=nf[1])$u
Bmat <- svd(matrix(rnorm(mydim[2]*nf[2]),mydim[2],nf[2]),nu=nf[2])$u
Cmat <- svd(matrix(rnorm(mydim[3]*nf[3]),mydim[3],nf[3]),nu=nf[3])$u
Gmat <- array(rnorm(prod(nf)),dim=nf)
Xmat <- array(tcrossprod(Amat%*%matrix(Gmat,nf[1],nf[2]*nf[3]),kronecker(Cmat,Bmat)),dim=mydim)
Emat <- array(rnorm(prod(mydim)),dim=mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR=1
X <- Xmat + Emat
# fit Tucker model (10 random starts -- sequential computation)
set.seed(1)
system.time({tuck <- tucker(X,nfac=nf)})
tuck$Rsq
# fit Tucker model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({tuck <- tucker(X,nfac=nf,parallel=TRUE,cl=cl)})
tuck$Rsq
stopCluster(cl)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.