Nothing
dmtd <- function(x, nu, mu, Sigma, tol = 1e-6) {
#' Density of a Multivariate \eqn{t} Distribution
#'
#' Density of the multivariate (\eqn{p} variables) \eqn{t} distribution (MTD)
#' with degrees of freedom \code{nu}, mean vector \code{mu} and
#' correlation matrix \code{Sigma}.
#'
#' @aliases dmtd
#'
#' @usage dmtd(x, nu, mu, Sigma, tol = 1e-6)
#' @param x length \eqn{p} numeric vector.
#' @param nu numeric. The degrees of freedom.
#' @param mu length \eqn{p} numeric vector. The mean vector.
#' @param Sigma symmetric, positive-definite square matrix of order \eqn{p}. The correlation matrix.
#' @param tol tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.
#' @return The value of the density.
#'
#' @details The density function of a multivariate \eqn{t} distribution
#' with \eqn{p} variables is given by:
#' \deqn{ \displaystyle{ f(\mathbf{x}|\nu, \boldsymbol{\mu}, \Sigma) = \frac{\Gamma\left( \frac{\nu+p}{2} \right) |\Sigma|^{-1/2}}{\Gamma\left( \frac{\nu}{2} \right) (\nu \pi)^{p/2}} \left( 1 + \frac{1}{\nu} (\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \right)^{-\frac{\nu+p}{2}} } }
#'
#' When \eqn{p=1} (univariate case) it is the location-scale \eqn{t} distribution, with density function:
#' \deqn{ \displaystyle{ f(x|\nu, \mu, \sigma^2) = \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\Gamma\left( \frac{\nu}{2} \right) \sqrt{\nu \pi \sigma^2}} \left(1 + \frac{(x-\mu)^2}{\nu \sigma^2}\right)^{-\frac{\nu+1}{2}} } }
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#'
#' @references S. Kotz and Saralees Nadarajah (2004), Multivariate \eqn{t} Distributions and Their Applications, Cambridge University Press.
#'
#' @seealso \code{\link{rmtd}}: random generation from a MTD.
#'
#' \code{\link{estparmtd}}: estimation of the parameters of a MTD.
#'
#' \code{\link{plotmvd}}, \code{\link{contourmvd}}: plot of the probability density of a bivariate distribution.
#'
#' @examples
#' nu <- 1
#' mu <- c(0, 1, 4)
#' Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
#' dmtd(c(0, 1, 4), nu, mu, Sigma)
#' dmtd(c(1, 2, 3), nu, mu, Sigma)
#'
#' # Univariate
#' dmtd(1, 3, 0, 1)
#' dt(1, 3)
#'
#' @export
# Number of variables
p <- length(mu)
# Sigma must be a matrix
if (is.numeric(Sigma) & !is.matrix(Sigma))
Sigma <- as.matrix(Sigma)
# x must have the same length as mu
if (length(x) != p)
stop(paste("x does not have", p, "elements.\n x and mu must have the same length."))
# Sigma1 and Sigma2 must be square matrices with p rows and p columns
if (NROW(Sigma) != p | NCOL(Sigma) != p)
stop("Sigma must be a square matrix with size equal to length(mu).")
if (p == 1) {
return(as.numeric(
gamma((nu+1)/2) / (gamma(nu/2)*sqrt(nu*pi*Sigma)) *
(1 + (x-mu)^2 / (nu*Sigma))^(-(nu+1)/2)
))
}
# Is Sigma symmetric?
if (!isSymmetric(Sigma))
stop("Sigma must be a symmetric, positive-definite matrix.")
# Eigenvalues and eigenvectors of Sigma
eig <- eigen(Sigma, symmetric = TRUE)
lambda <- eig$values
# Is Sigma positive-definite?
if (any(lambda < tol * max(abs(lambda))))
stop("Sigma must be a symmetric, positive-definite matrix.")
# Inverse of matrix Sigma
invSigma <- solve(Sigma)
xcent <- cbind(x - mu)
# Computation of the density
result <- gamma((nu+p)/2) / ( gamma(nu/2)*(nu*pi)^(p/2) )
result <- result * (1 + t(xcent) %*% invSigma %*% xcent)^(-(nu+p)/2)
return(as.numeric(result))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.