Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#",
fig.width=7,
fig.height=5
)
library(knitr)
## ----load_dependencies, message=FALSE-----------------------------------------
library(mvMAPIT)
library(ggplot2)
library(dplyr)
## ----read_data, eval = FALSE--------------------------------------------------
# data.files <- c("elife-71393-fig1-data1-v3.csv", "elife-71393-fig1-data2-v3.csv")
#
# data1 <- read.csv(file = data.files[1])
# data2 <- read.csv(file = data.files[2])
#
# data1names <- c(30, 35, 36, 57, 64, 65, 66, 79, 82, 83, 84, 85, 92, 95, 103, 113)
# data2names <- c(29, 35, 65, 66, 69, 82, 83, 84, 85, 87, 112.1)
# data1map <- as.data.frame(list(
# pos = sprintf("pos%d", c(1:16)),
# term = data1names
# ))
# data2map <- as.data.frame(list(
# pos = sprintf("pos%d", c(1:11)),
# term = data2names
# ))
# phenotype1 <- data1[, endsWith(names(data1), "mean")]
# genotype1 <- data1[, startsWith(names(data1), "pos")]
#
# phenotype2 <- data2[, endsWith(names(data2), "mean")]
# genotype2 <- data2[, startsWith(names(data2), "pos")]
#
# colnames(genotype1) <- data1names
# colnames(genotype2) <- data2names
#
# CR9114 <- list("phenotype" = phenotype1, "genotype" = genotype1, "map" = data1map)
# CR6261 <- list("phenotype" = phenotype2, "genotype" = genotype2, "map" = data2map)
## ----run_mvmapit, eval = FALSE------------------------------------------------
# mvmapit_CR9114 <- mvmapit(
# t(CR9114$genotype),
# t(CR9114$phenotype),
# test = "hybrid"
# )
# mvmapit_CR6261 <- mvmapit(
# t(CR6261$genotype),
# t(CR6261$phenotype),
# test = "hybrid"
# )
## ----manhattan----------------------------------------------------------------
for_facetgrid_row <-
as_labeller(c(
`1` = "Trait #1",
`2` = "Trait #2",
`3` = "Covariance",
`4` = "Combined"
))
phillips_data$fisher$colorf <- factor(phillips_data$fisher$color,
labels = c("1",
"Significant"))
gg_fisher <- phillips_data$fisher %>%
ggplot(aes(x = position, y = -log10(pplot))) +
geom_point(aes(colour = colorf), size = 1) +
scale_color_manual(values = c("#1b9e77", "#2c2c2c"),
breaks = c("Significant")) +
scale_y_continuous(breaks = c(0, 5, 10),
labels = c("0", "5", ">10")) +
geom_hline(aes(yintercept = -log10(threshold),
linetype = "Bonferroni"),
color = "#d95f02") +
scale_linetype_manual(name = "", values = c('dashed')) +
theme_bw() +
facet_grid(row ~ species, labeller = labeller(row = for_facetgrid_row)) +
theme(
panel.grid.major.x = element_blank(),
legend.position = "bottom",
text = element_text(family = "Arial")
) +
labs(x = "Position",
y = "-log10(p)",
colour = NULL)
show(gg_fisher)
## ----CR6261-------------------------------------------------------------------
gg_CR6261 <- ggplot(phillips_data$regression$CR6261,
aes(res_x, res_y, fill = effect)) +
geom_tile() +
scale_fill_gradient2(
high = "#b2182b",
mid = "white",
low = "#2166ac",
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar"
) +
theme_bw() +
theme(legend.position = "bottom")
show(gg_CR6261)
## ----CR9114-------------------------------------------------------------------
gg_CR9114 <- ggplot(phillips_data$regression$CR9114,
aes(res_x, res_y, fill = effect)) +
geom_tile() +
scale_fill_gradient2(
high = "#b2182b",
mid = "white",
low = "#2166ac",
midpoint = 0,
space = "Lab",
na.value = "#000000",
guide = "colourbar",
limits = c(min(phillips_data$regression$CR6261$effect),
max(phillips_data$regression$CR6261$effect))
) +
theme_bw() +
theme(legend.position = "bottom")
show(gg_CR9114)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.