Nothing
# Standard names used for parametric Z axes
Z_parametric_standard_names <-
c("atmosphere_ln_pressure_coordinate",
"atmosphere_sigma_coordinate", "atmosphere_hybrid_sigma_pressure_coordinate",
"atmosphere_hybrid_height_coordinate", "atmosphere_sleve_coordinate",
"ocean_sigma_coordinate", "ocean_s_coordinate", "ocean_s_coordinate_g1",
"ocean_s_coordinate_g2", "ocean_sigma_z_coordinate", "ocean_double_sigma_coordinate")
#' Vertical CF axis object
#'
#' @description This class represents a vertical axis, which may be parametric.
#' A regular vertical axis behaves like any other numeric axis. A parametric
#' vertical axis, on the other hand, is defined through an index value that is
#' contained in the axis coordinates, with additional data variables that hold
#' ancillary "formula terms" with which to calculate dimensional axis
#' coordinates. It is used in atmosphere and ocean data sets.
#'
#' Parametric vertical axes can only be read from file, not created from
#' scratch.
#'
#' @references
#' https://cfconventions.org/Data/cf-conventions/cf-conventions.html#parametric-vertical-coordinate
#' https://www.myroms.org/wiki/Vertical_S-coordinate
#'
#' @docType class
#' @export
CFAxisVertical <- R6::R6Class("CFAxisVertical",
inherit = CFAxisNumeric,
cloneable = FALSE,
private = list(
# The 'standard_name' attribute of the axis that identifies the parametric
# form of this axis.
.parameter_name = "",
# The standard name for the computed values of the axis.
.name_computed = "",
# The unit of the computed values of the axis.
.units_computed = "",
# A `data.frame` with columns `term`, `variable` and `param` containing
# the terms of the formula to calculate the axis values. Column `param`
# has the references to the variables that hold the data for each term.
.terms = NULL,
# The computed values of the parametric axis. This is a CFVariable instance
# once it is computed.
.computed_values = NULL,
# Print some details of the parametric definition.
print_details = function(...) {
if (!is.null(private$.terms)) {
cat("\nParametric definition:", private$.parameter_name)
if (is.null(private$.computed_values)) {
cat("\n (not calculated)\n")
} else {
cat("\n ", private$.name_computed, " (", private$.units_computed, ")\n", sep = "")
cat(" Axes:", paste(sapply(private$.computed_values$axes, function(ax) ax$shard())), "\n")
}
}
},
# This function computes the actual dimensional axis values from the terms.
compute = function() {
if (is.null(private$.computed_values))
switch(private$.parameter_name,
"ocean_s_coordinate_g1" = private$ocean_s_coordinate_g1(),
"ocean_s_coordinate_g2" = private$ocean_s_coordinate_g2()
)
private$.computed_values
},
# Helper function to get the data for a specific formula term. Can also
# return 0 if the data is not found.
get_data = function(term) {
v <- private$.terms[private$.terms$term == term, ]$param[[1L]]
if (inherits(v, "CFVerticalParametricTerm"))
v$raw()
else 0
},
# Helper function to compute z(i,j,k,n) = s(i,j,k) * t(i,j,n)
ijkn_from_ijk_times_ijn = function(ijk, ijn) {
d1 <- dim(ijk)
d2 <- dim(ijn)
ijkn <- array(ijk, dim = c(d1, d2[3])) # Recycle last dimension
ijnk <- array(ijn, dim = c(d2, d1[3])) # Same but last two dims must be reversed
ijkn * aperm(ijnk, c(1, 2, 4, 3))
},
ocean_s_coordinate_g1 = function() {
# z(n,k,j,i) = S(k,j,i) + eta(n,j,i) * (1 + S(k,j,i) / depth(j,i))
# where S(k,j,i) = depth_c * s(k) + (depth(j,i) - depth_c) * C(k)
s <- self$values
C <- private$get_data("C")
eta <- private$get_data("eta")
depth <- private$get_data("depth")
depth_c <- private$get_data("depth_c")
S <- sweep((depth - depth_c) %o% C, 3, depth_c * s, "+")
# Construct the axes for the result. Use "depth" axes [i,j], combine with
# self axis [k].
ax <- private$.terms[private$.terms$term == "depth", ]$param[[1L]]
axes <- append(ax$axes, self)
names(axes) <- c(names(ax$axes), self$name)
crds <- if (identical(eta, 0))
S
else {
tmp <- sweep(S, MARGIN = 1:2, depth, "/") + 1 # [k,j,i] 1 + S(k,j,i) / depth(j,i)
d <- dim(eta)
if (is.null(d)) # eta is a scalar
S + eta * tmp
else if (length(d) == 3L) {
# eta is time-variant so add the [n] axis
ax <- private$.terms[private$.terms$term == "eta", ]$param[[1L]]
axes <- append(axes, ax$axes[[3L]])
names(axes) <- c(names(axes)[1L:3L], ax$axes[[3L]]$name)
z <- private$ijkn_from_ijk_times_ijn(tmp, eta)
sweep(z, MARGIN = 1:3, S, "+")
} else
S + sweep(tmp, MARGIN = 1:2, eta, "*")
}
private$.name_computed <- private$ocean_computed_name()
v <- CFVariable$new(private$.name_computed, values = crds, axes = axes)
un <- private$.terms[private$.terms$term == "depth", "param"][[1L]]$attribute("units")
v$set_attribute("units", "NC_CHAR", un)
private$.computed_values <- v
},
ocean_s_coordinate_g2 = function() {
# z(n,k,j,i) = eta(n,j,i) + (eta(n,j,i) + depth(j,i)) * S(k,j,i)
# where S(k,j,i) = (depth_c * s(k) + depth(j,i) * C(k)) / (depth_c + depth(j,i))
s <- self$values
C <- private$get_data("C")
eta <- private$get_data("eta")
depth <- private$get_data("depth")
depth_c <- private$get_data("depth_c")
# Construct the axes for the result. Use "depth" axes [i,j], combine with
# self axis [k].
ax <- private$.terms[private$.terms$term == "depth", ]$param[[1L]]
axes <- append(ax$axes, self)
names(axes) <- c(names(ax$axes), self$name)
S <- sweep(depth %o% C, MARGIN = 3, s * depth_c, "+") # [k,j,i] depth_c * s(k) + depth(j,i) * C(k)
S <- sweep(S, MARGIN = 1:2, depth + depth_c, "/") # [k,j,i] S(k,j,i)
crds <- if (identical(eta, 0))
sweep(S, MARGIN = 1:2, depth, "*")
else {
d <- dim(eta)
if (is.null(d)) # eta is a scalar
sweep(S, MARGIN = 1:2, depth + eta, "*") + eta
else if (length(d) == 3L) {
# eta is time-variant so add the [n] axis
ax <- private$.terms[private$.terms$term == "eta", ]$param[[1L]]
axes <- append(axes, ax$axes[[3L]])
names(axes) <- c(names(axes)[1L:3L], ax$axes[[3L]]$name)
z <- private$ijkn_from_ijk_times_ijn(S, sweep(eta, MARGIN = 1:2, depth, "+"))
sweep(z, MARGIN = c(1, 2, 4), eta, "+")
} else {
z <- sweep(S, MARGIN = 1:2, eta + depth, "*")
sweep(z, MARGIN = 1:2, eta, "+")
}
}
private$.name_computed <- private$ocean_computed_name()
v <- CFVariable$new(private$.name_computed, values = crds, axes = axes)
un <- private$.terms[private$.terms$term == "depth", "param"][[1L]]$attribute("units")
v$set_attribute("units", "NC_CHAR", un)
private$.computed_values <- v
},
# Helper function to determine the computed name of ocean formulations
ocean_computed_name = function() {
switch(private$.terms[private$.terms$term == "depth", ]$param[[1L]]$attribute("standard_name"),
"sea_floor_depth_below_geoid" = "altitude",
"sea_floor_depth_below_geopotential_datum" = "height_above_geopotential_datum",
"sea_floor_depth_below_reference_ellipsoid" = "height_above_reference_ellipsoid",
"sea_floor_depth_below_mean_sea_level" = "height_above_mean_sea_level",
"non_standard_name"
)
}
),
public = list(
#' @description Create a new instance of this class.
#' @param var The name of the axis when creating a new axis. When reading an
#' axis from file, the [NCVariable] object that describes this instance.
#' @param values Optional. The values of the axis in a vector. The values
#' have to be numeric and monotonic. Ignored when argument `var` is a
#' `NCVariable` object.
#' @param start Optional. Integer index where to start reading axis data
#' from file. The index may be `NA` to start reading data from the start.
#' @param count Optional. Number of elements to read from file. This may be
#' `NA` to read to the end of the data.
#' @param attributes Optional. A `data.frame` with the attributes of the
#' axis. When an empty `data.frame` (default) and argument `var` is an
#' `NCVariable` instance, attributes of the axis will be taken from the
#' netCDF resource.
initialize = function(var, values, start = 1L, count = NA, attributes = data.frame()) {
super$initialize(var, values = values, start = start, count = count, orientation = "Z", attributes = attributes)
if (!is.na(self$attribute("formula_terms")))
private$.parameter_name <- self$attribute("standard_name")
},
#' @description Detach the parametric terms from an underlying netCDF
#' resource.
#' @return Self, invisibly.
detach = function() {
# Detaching parametric terms leads to a loop because they are variables, having axes, having parametric terms...
#lapply(private$.terms$param[-1L], function(t) t$detach()) # do not detach the first parametric term which is self
super$detach()
invisible(self)
},
#' @description Create a copy of this axis. The copy is completely separate
#' from this instance, meaning that the copies of both this instance and
#' all of its components are made as new instances.
#' @param name The name for the new axis. If an empty string is passed, will
#' use the name of this axis.
#' @return The newly created axis.
copy = function(name = "") {
if (self$has_resource) {
ax <- CFAxisVertical$new(self$NCvar, start = private$.start_count$start,
count = private$.start_count$count, attributes = self$attributes)
if (nzchar(name))
ax$name <- name
} else {
if (!nzchar(name))
name <- self$name
ax <- CFAxisVertical$new(name, values = private$.values, attributes = self$attributes)
}
private$copy_properties_into(ax)
if (self$is_parametric)
ax$set_parametric_terms(private$.parameter_name, private$.terms)
ax
},
#' @description Create a copy of this axis but using the supplied values.
#' The attributes are copied to the new axis. Boundary values, parametric
#' coordinates and auxiliary coordinates are not copied.
#'
#' After this operation the attributes of the newly created axes may not
#' be accurate, except for the "actual_range" attribute. The calling code
#' should set, modify or delete attributes as appropriate.
#' @param name The name for the new axis. If an empty string is passed, will
#' use the name of this axis.
#' @param values The values to the used with the copy of this axis.
#' @return The newly created axis.
copy_with_values = function(name = "", values) {
if (!nzchar(name))
name <- self$name
CFAxisVertical$new(name, values = values, attributes = self$attributes)
},
#' @description Set the parametric terms for this axis. The name and the
#' terms have to fully describe a CF parametric vertical axis.
#'
#' The terms must also agree with the other axes used by any data variable
#' that refers to this axis. That is not checked here so the calling code
#' must make that assertion.
#' @param sn The "standard_name" of the parametric formulation. See the CF
#' documentation for details.
#' @param terms A `data.frame` with columns `term`, `variable` and
#' `param` containing the terms of the formula to calculate the axis
#' values. Column `param` has the references to the variables that
#' hold the data for each term.
set_parametric_terms = function(sn, terms) {
# FIXME: Put in all the checks on terms and sn
private$.terms <- terms
private$.parameter_name <- sn
self$set_attribute("formula_terms", "NC_CHAR", paste(terms$term, ": ", terms$variable, sep = "", collapse = " "))
self$set_attribute("standard_name", "NC_CHAR", sn)
private$.computed_values <- NULL
},
#' @description Append a vector of values at the end of the current values
#' of the axis. Boundary values are appended as well but if either this
#' axis or the `from` axis does not have boundary values, neither will the
#' resulting axis.
#'
#' This method is not recommended for parametric vertical axes. Any
#' parametric terms will be deleted. If appending of parametric axes is
#' required, the calling code should first read out the parametric terms
#' and merge them with the parametric terms of the `from` axis before
#' setting them back for this axis.
#' @param from An instance of `CFAxisVertical` whose values to append to the
#' values of this axis.
#' @return A new `CFAxisVertical` instance with values from this axis and
#' the `from` axis appended.
append = function(from) {
if (super$can_append(from) && .c_is_monotonic(self$values, from$values)) {
ax <- CFAxisVertical$new(self$name, values = c(private$values, from$values),
attributes = self$attributes)
if (!is.null(private$.bounds)) {
new_bnds <- private$.bounds$append(from$bounds)
if (!is.null(new_bnds))
ax$bounds <- new_bnds
}
if (self$is_parametric) {
# Delete all references to parametric terms
private$.parameter_name <- ""
private$.name_computed <- ""
private$.units_computed <- ""
private$.terms <- NULL
private$.computed_values <- NULL
self$delete_attribute("formula_terms")
}
ax
} else
stop("Axis values cannot be appended.", call. = FALSE)
},
#' @description Return an axis spanning a smaller coordinate range. This
#' method returns an axis which spans the range of indices given by the
#' `rng` argument. If this axis has parametric terms, these are not subset
#' here - they should be separately treated once all associated axes in
#' the terms have been subset. That happens automatically in `CFVariable`
#' methods which call the `subset_parametric_terms()` method.
#' @param name The name for the new axis. If an empty string is passed
#' (default), will use the name of this axis.
#' @param rng The range of indices whose values from this axis to include in
#' the returned axis. If the value of the argument is `NULL`, return a
#' copy of the axis.
#' @return A new `CFAxisVertical` instance covering the indicated range of
#' indices. If the value of the argument `rng` is `NULL`, return a copy of
#' this axis as the new axis.
subset = function(name = "", rng = NULL) {
if (is.null(rng))
self$copy(name)
else {
rng <- range(rng)
if (self$has_resource) {
ax <- CFAxisVertical$new(private$.NCvar, start = private$.start_count$start + rng[1L] -1L,
count = rng[2L] - rng[1L] + 1L, attributes = self$attributes)
if (nzchar(name))
ax$name <- name
} else {
if (!nzchar(name))
name <- self$name
ax <- CFAxisVertical$new(name, values = private$.values[rng[1L]:rng[2L]],
attributes = self$attributes)
}
private$copy_properties_into(ax, rng)
}
},
#' @description Subset the parametric terms of this axis.
#' @param original_axis_names Character vector of names of the axes prior to
#' a modifying operation in the owning data variable
#' @param new_axes List of `CFAxis` instances to use for the subsetting.
#' @param start The indices to start reading data from the file, as an
#' integer vector at least as long as the number of axis for the term.
#' @param count The number of values to read from the file, as an integer
#' vector at least as long as the number of axis for the term.
#' @param aux Optional. List with the parameters for an auxiliary grid
#' transformation. Default is `NULL`.
#' @param ZT_dim Optional. Dimensions of the non-grid axes when an auxiliary
#' grid transformation is specified.
#' @return Self, invisibly. The parametric terms will have been subset in
#' this axis.
subset_parametric_terms = function(original_axis_names, new_axes, start, count, aux = NULL, ZT_dim = NULL) {
terms <- private$.terms
if (is.null(terms)) return()
params <- terms$param
new_params <- vector("list", length(params))
for (p in seq_along(params)) {
if (is.null(params[[p]])) next
new_params[[p]] <- params[[p]]$subset(original_axis_names, new_axes, start, count, aux, ZT_dim)
}
terms$param <- new_params
self$set_parametric_terms(self$attribute("standard_name"), terms)
invisible(self)
}
),
active = list(
#' @field friendlyClassName (read-only) A nice description of the class.
friendlyClassName = function(value) {
if (missing(value))
if (is.null(private$.terms)) "Vertical axis"
else "Vertical axis (parametric)"
},
#' @field formula_terms (read-only) A `data.frame` with the "formula_terms"
#' to calculate the parametric axis values.
formula_terms = function(value) {
if (missing(value))
private$.terms
},
#' @field is_parametric (read-only) Logical flag that indicates if the
#' coordinates of the axis are parametric.
is_parametric = function(value) {
if (missing(value))
!is.na(self$attribute("formula_terms"))
},
#' @field parametric_coordinates (read-only) Retrieve the parametric
#' coordinates of this vertical axis as a [CFVariable].
parametric_coordinates = function(value) {
if (missing(value))
private$compute()
},
#' @field computed_name (read-only) The name of the computed parameterised
#' coordinates. If the parameterised coordinates have not been computed yet
#' the computed name is an empty string.
computed_name = function(value) {
if (missing(value)) {
private$.name_computed
}
},
#' @field computed_units (read-only) Return the units of the computed
#' parameterised coordinates, if computed, otherwise return `NULL`. This
#' will access the standard names table.
computed_units = function(value) {
if (missing(value)) {
if (is.null(private$.computed_values))
NULL
else if (private$.name_computed == "non_standard_name")
"unknown units"
else
CF$standard_names$find(private$.name_computed)$units
}
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.