inst/tinytest/binomial.R

suppressPackageStartupMessages(library(glmnet))
if (interactive()) library(tinytest)

# ncvreg works for logistic regression
x <- matrix(rnorm(500), ncol = 10)
b <- rnorm(10)
y <- rnorm(x %*% b) > 0
beta <- glm(y ~ x, family = "binomial")$coef
scad <- ncvreg(x, y, lambda = 1:0, family = "binomial", penalty = "SCAD") |>
  coef(which = 2)
mcp <- ncvreg(x, y, lambda = 1:0, family = "binomial", penalty = "MCP") |>
  coef(which = 2)
expect_equivalent(scad, beta, tolerance = 0.01)
expect_equivalent(mcp, beta, tolerance = 0.01)

# ncvreg reproduces lasso: binomial
fit <- ncvreg(x, y, family = "binomial", penalty = "lasso")
nlasso <- coef(fit)
plot(fit, log = TRUE)
fit <- glmnet(x, y, family = "binomial", lambda = fit$lambda)
glasso <- coef(fit) |> as.matrix()
plot(fit, "lambda")
expect_equivalent(nlasso, glasso, tolerance = 0.01)

# logLik() is correct: binomial
fit_mle <- glm(y ~ x, family = "binomial")
fit <- ncvreg(x, y, lambda.min = 0, family = "binomial")
expect_equivalent(logLik(fit)[100], logLik(fit_mle)[1], tol = 0.001)
expect_equivalent(AIC(fit)[100], AIC(fit_mle), tol = 0.001)

# ncvreg dependencies work: binomial

# Predict
p <- predict(fit, x, "link")
p <- predict(fit, x, "response")
p <- predict(fit, x, "class")
p <- predict(fit, x, "coef")
p <- predict(fit, x, "vars")
p <- predict(fit, x, "nvars")

# y logical
fit <- ncvreg(x, y == 1, lambda.min = 0, family = "binomial")

# Summary
summary(fit, which = 10)
summary(fit, lam = 0.05)

# cv.ncvreg() options work for binomial
n <- 200
p <- 10
x <- matrix(rnorm(n * p), ncol = p)
b <- c(-3, 3, rep(0, 8))
y <- rnorm(n, mean = x %*% b, sd = 1) > 0.5

cvfit <- cv.ncvreg(x, y, family = "binomial")
withr::with_par(list(mfrow = c(2, 2)), plot(cvfit, type = "all"))
summary(cvfit)
predict(cvfit, type = "coefficients")
predict(cvfit, type = "vars")
predict(cvfit, type = "nvars")
head(predict(cvfit, X = x, "link"))
head(predict(cvfit, X = x, "response"))
head(predict(cvfit, X = x, "class"))

b <- c(-3, 3, rep(0, 8))
y <- rnorm(n, mean = x %*% b, sd = 5) > 0.5
cvfit <- cv.ncvreg(x, y, family = "binomial")
plot(cvfit, type = "all")

b <- rep(0, 10)
y <- rnorm(n, mean = x %*% b, sd = 5) > 0.5
cvfit <- cv.ncvreg(x, y, family = "binomial")
plot(cvfit, type = "all")

Try the ncvreg package in your browser

Any scripts or data that you put into this service are public.

ncvreg documentation built on Nov. 6, 2025, 9:06 a.m.