inst/tinytest/cv-ncvsurv.R

library(survival, quietly = TRUE)

# Works
X <- matrix(rnorm(50 * 10), 50, 10)
y <- cbind(rexp(50, exp(X[, 1])), sample(rep(0:1, c(10, 40))))
cvfit <- cv.ncvsurv(X, y, lambda.min = 0)
plot(cvfit)
plot(cvfit, type = "all")
summary(cvfit)

# Predict
p <- predict(cvfit, X, "link", lambda = 0.1)
p <- predict(cvfit, X, "link")
p <- predict(cvfit, X, "response")
p <- predict(cvfit, X, "coef")
p <- predict(cvfit, X, "vars")
p <- predict(cvfit, X, "nvars")
S <- predict(cvfit, X, "survival", lambda = 0.1)
plot(S)
S <- predict(cvfit, X[1, ], "survival", lambda = 0.1)
plot(S)
p <- predict(cvfit, X, "median")

# LOOCV
y <- cbind(rexp(25), sample(rep(0:1, c(5, 20))))
X <- matrix(rnorm(25 * 5), 25, 5)
cvfit <- cv.ncvsurv(X, y, nfolds = 25)
plot(cvfit, type = "all")
summary(cvfit)

# AUC
cvfit <- cv.ncvsurv(X, y, returnY = TRUE)
AUC(cvfit)

# --- cv.ncvsurv() agrees with glmnet --------------------------------
n <- 50
p <- 100
X <- matrix(rnorm(n * p), ncol = p)
b <- c(2, -2, 1, -1, rep(0, p - 4))
y <- Surv(rexp(n, exp(X %*% b)), rbinom(n, 1, 0.5))
par(mfrow = c(2, 2))

ncvfit <- cv.ncvsurv(X, y, penalty = "lasso", lambda.min = 0.2)
plot(ncvfit)
ncvfit <- cv.ncvsurv(X, y, penalty = "lasso", events.only = FALSE, lambda.min = 0.2)
plot(ncvfit)
ncvfit <- cv.ncvsurv(X, y, lambda.min = 0.4)
plot(ncvfit)
ncvfit <- cv.ncvsurv(X, y, events.only = FALSE, lambda.min = 0.4)
plot(ncvfit)

require(glmnet)
par(mfrow = c(2, 1))
gcvfit <- cv.glmnet(X, y, family = "cox", grouped = TRUE, foldid = ncvfit$fold, lambda.min = 0.01)
ncvfit <- cv.ncvsurv(X, y, penalty = "lasso", fold = ncvfit$fold, lambda = gcvfit$lambda)
plot(ncvfit)
plot(gcvfit, sign.lambda = -1)

require(glmnet)
par(mfrow = c(2, 1))
ncvfit1 <- cv.ncvsurv(X, y, penalty = "lasso", fold = ncvfit$fold, se = "quick")
ncvfit2 <- cv.ncvsurv(X, y, penalty = "lasso", fold = ncvfit$fold, se = "bootstrap")
ylim <- range(c(
  ncvfit1$cve + ncvfit1$cvse,
  ncvfit1$cve - ncvfit1$cvse,
  ncvfit2$cve + ncvfit2$cvse,
  ncvfit2$cve - ncvfit2$cvse
))
plot(ncvfit1, ylim = ylim)
plot(ncvfit2, ylim = ylim)

# --- cv.ncvsurv() options work --------------------------------------
n <- 50
p <- 20
X <- matrix(rnorm(n * p), ncol = p)
b <- c(2, -2, 1, -1, rep(0, p - 4))
y <- cbind(rexp(n, exp(X %*% b)), rbinom(n, 1, 0.5))

par(mfrow = c(2, 2))
cvfit <- cv.ncvsurv(X, y)
plot(cvfit, type = "all")
par(mfrow = c(2, 2))
summary(cvfit)
predict(cvfit, type = "coefficients")
predict(cvfit, type = "vars")
predict(cvfit, type = "nvars")

Try the ncvreg package in your browser

Any scripts or data that you put into this service are public.

ncvreg documentation built on Nov. 6, 2025, 9:06 a.m.