| threshold | R Documentation |
Thresholds are each vertexes exposure at the time of adoption.
Substantively it is the proportion of adopters required for each ego to adopt. (see exposure).
threshold(
obj,
toa,
t0 = min(toa, na.rm = TRUE),
include_censored = FALSE,
lags = 0L,
...
)
obj |
Either a |
toa |
Integer vector. Indicating the time of adoption of the innovation. |
t0 |
Integer scalar. See |
include_censored |
Logical scalar. When |
lags |
Integer scalar. Number of lags to consider when computing thresholds. |
... |
Further arguments to be passed to |
By default exposure is not computed for vertices adopting at the
first time period, include_censored=FALSE, as estimating threshold for
left censored data may yield biased outcomes.
A vector of size n indicating the threshold for each node.
George G. Vega Yon & Thomas W. Valente
Threshold can be visualized using plot_threshold
Other statistics:
bass,
classify_adopters(),
cumulative_adopt_count(),
dgr(),
ego_variance(),
exposure(),
hazard_rate(),
infection(),
moran(),
struct_equiv(),
vertex_covariate_dist()
# Generating a random graph with random Times of Adoption
set.seed(783)
toa <- sample.int(4, 5, TRUE)
graph <- rgraph_er(n=5, t=max(toa) - min(toa) + 1)
# Computing exposure using Structural Equivalnece
adopt <- toa_mat(toa)
se <- struct_equiv(graph)
se <- lapply(se, function(x) methods::as((x$SE)^(-1), "dgCMatrix"))
expo <- exposure(graph, adopt$cumadopt, alt.graph=se)
# Retrieving threshold
threshold(expo, toa)
# We can do the same by creating a diffnet object
diffnet <- as_diffnet(graph, toa)
threshold(diffnet, alt.graph=se)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.