Nothing
nma.krahn <- function(x, reference.group = x$reference.group,
tau.preset = 0, sep.trts = x$sep.trts) {
chkclass(x, "netmeta")
if (is.na(tau.preset))
tau.preset <- 0
if (is.null(sep.trts))
sep.trts <- ":"
n <- x$n
if (reference.group == "")
trts <- colnames(x$A.matrix)
else
trts <- c(reference.group,
colnames(x$A.matrix)[colnames(x$A.matrix) != reference.group])
studies.pre <- data.frame(studlab = x$studlab,
treat1 = x$treat1, treat2 = x$treat2,
TE = -x$TE,
seTE = sqrt(x$seTE^2 + tau.preset^2),
narms = x$narms[match(x$studlab, x$studies)],
stringsAsFactors = FALSE)
##
studies <- studies.pre <- studies.pre[order(studies.pre$studlab), ]
twoarm <- any(studies$narms == 2)
multiarm <- any(studies$narms > 2)
selmulti <- studies$narms > 2
sel <- studies.pre$treat2 == reference.group
##
studies$treat1[sel] <- studies.pre$treat2[sel]
studies$treat2[sel] <- studies.pre$treat1[sel]
studies$TE[sel] <- -studies.pre$TE[sel]
studies <- data.frame(studies,
comparison = paste(studies$treat1, studies$treat2, sep = sep.trts))
comparison.num.poss <- n * (n - 1) / 2
comparisons <- levels(factor(as.character(studies$comparison)))
comparison.num <- length(comparisons)
trts.poss <- rep(NA, comparison.num.poss)
k <- 1
for (i in 1:(n - 1))
for (j in (i + 1):n) {
trts.poss[k] <- paste(trts[i], trts[j], sep = sep.trts)
k <- k + 1
}
direct <- matrix(NA, nrow = comparison.num, ncol = 6)
##
colnames(direct) <- c("comparison", "TE", "seTE",
"TE.2arm", "seTE.2arm", "n.2arm")
##
direct <- data.frame(direct)
j <- 0
##
for (i in names(table(studies$comparison))) {
j <- j + 1
##
TE.i <- studies$TE[studies$comparison == i]
seTE.i <- studies$seTE[studies$comparison == i]
m1 <-
suppressWarnings(metagen(TE.i, seTE.i, sm = x$sm,
method.tau = "DL", method.tau.ci = "",
warn = FALSE))
##
direct$comparison[j] <- i
direct$TE[j] <- m1$TE.common
direct$seTE[j] <- m1$seTE.common
##
if (sum(studies$comparison == i & !selmulti) > 0) {
TE.i <- studies$TE[studies$comparison == i & studies$narms == 2]
seTE.i <- studies$seTE[studies$comparison == i & studies$narms == 2]
m2 <-
suppressWarnings(metagen(TE.i, seTE.i, sm = x$sm,
method.tau = "DL", method.tau.ci = "",
warn = FALSE))
##
direct$TE.2arm[j] <- m2$TE.common
direct$seTE.2arm[j] <- m2$seTE.common
direct$n.2arm[j] <- m2$k
}
}
if (multiarm) {
multistudies <-
split(studies[selmulti, ], as.character(studies$studlab[selmulti]))
multistudies <-
lapply(multistudies,
function(x)
x[which(x$treat1 == names(which.max(table(x$treat1)))), ]
)
multistudies <-
lapply(multistudies,
function(x)
x[order(x$treat2), ]
)
##
des <-
lapply(multistudies,
function(x)
paste(c(x$treat1[1], x$treat2), collapse = sep.trts)
)
multistudies <-
data.frame(unsplit(multistudies,
rep(names(multistudies),
unlist(lapply(multistudies,
function(x)
nrow(x)
)
)
)
),
design = unsplit(des,
rep(names(multistudies),
unlist(lapply(multistudies,
function(x)
nrow(x)
)
)
)
)
)
##
multistudies <-
data.frame(multistudies,
des = paste(multistudies$comparison, multistudies$design,
sep = "_"))
##
row.names(studies) <- NULL
multistudies2 <-
split(studies[selmulti, ], as.character(studies$studlab[selmulti]))
multistudies2 <-
lapply(multistudies2,
function(x)
x[do.call(order, x[, c("treat1","treat2")]), ]
)
multistudies2 <-
lapply(multistudies2,
function(x)
rbind(
x[x$treat1 == names(which.max(table(x$treat1))), ],
x[x$treat1 %in%
names(table(x$treat1)[-which.max(table(x$treat1))]), ])
)
multistudies2 <-
unsplit(multistudies2,
rep(names(multistudies2),
unlist(lapply(multistudies2,
function(x)
nrow(x)
)
)
)
)
}
studies <- data.frame(studies, design = studies$comparison)
if (multiarm & sum(is.na(direct$seTE.2arm)) > 0)
direct2 <- data.frame(direct[!is.na(direct$seTE.2arm), ])
else
direct2 <- direct
##
direct2 <- data.frame(direct2)
if (length(unique(studies$comparison)) == 1) {
res <- list(n = 2)
##
class(res) <- "nma.krahn"
##
return(res)
}
V.design <- diag(direct2$seTE.2arm^2,
nrow = length(direct2$seTE.2arm),
ncol = length(direct2$seTE.2arm))
if (multiarm) {
sp <- split(multistudies2, multistudies2$studlab)
armM <- unlist(lapply(split(multistudies2$narms, multistudies2$studlab),
function(x)
x[1]
)
)
##
covs <-
lapply(sp,
function(x) {
n <- x$narms[1]
k <- 0
m <- matrix(NA, nrow = n - 1, ncol = n - 1)
for (i in 1:(n - 2)) {
for (j in (i + 1):(n - 1)) {
m[i, j] <-
(x$seTE[i]^2 + x$seTE[j]^2 - x$seTE[n + k]^2) / 2
m[j, i] <-
(x$seTE[i]^2 + x$seTE[j]^2 - x$seTE[n + k]^2) / 2
k <- k + 1
}
}
diag(m) <- x$seTE[1:(n - 1)]^2
m
}
)
##
V3 <- NA
##
for (i in 1:length(covs))
V3 <- adiag(V3, covs[[i]])
##
V3 <- V3[-1, -1]
##
if (sum(!selmulti) == 0) {
V.studies <- V3
}
else {
if (sum(!selmulti) < 2)
V.2arm <- matrix(studies$seTE[!selmulti]^2)
else
V.2arm <- diag(studies$seTE[!selmulti]^2)
##
V.studies <- adiag(V.2arm, V3)
}
colnames(V.studies) <- c(as.character(studies$design[!selmulti]),
as.character(multistudies$design))
rownames(V.studies) <- c(as.character(studies$design[!selmulti]),
as.character(multistudies$design))
##
multicomp <- names(which(table(multistudies$design) > 0))
V3.agg <- NA
TE.agg <- NA
##
for (i in 1:length(multicomp)) {
studlabM <-
unique(multistudies$studlab[multistudies$design == multicomp[i]])
ncovs <- covs[names(covs) %in% studlabM]
l <- sapply(ncovs, solve)
dim <- multistudies$narms[multistudies$studlab == studlabM[1]][1] - 1
covs3 <- solve(matrix(apply(l, 1, sum), nrow = dim))
V3.agg <- adiag(V3.agg, covs3)
m <- matrix(NA, nrow = dim, ncol = length(studlabM))
for (j in 1:length(studlabM))
m[, j] <- matrix(l[, j], nrow = dim) %*%
multistudies$TE[multistudies$studlab == studlabM[j]]
##
TE.agg <- c(TE.agg, covs3 %*% apply(m, 1, sum))
}
TE.agg <- TE.agg[-1]
V3.agg <- V3.agg[-1, -1]
V <- adiag(V.design, V3.agg)
##
nam <-
rep(multicomp,
unlist(lapply(split(multistudies, multistudies$design),
function(x)
x$narms[1]
)
) - 1
)
##
if (any(twoarm))
rownames(V) <- colnames(V) <- c(direct2$comparison, nam)
else
rownames(V) <- colnames(V) <- nam
##
TE.dir <- c(direct2$TE.2arm, TE.agg)
}
else {
V <- adiag(V.design)
rownames(V) <- direct2$comparison
colnames(V) <- direct2$comparison
TE.dir <- direct2$TE.2arm
V.studies <- diag(studies$seTE[!selmulti]^2)
colnames(V.studies) <- rownames(V.studies) <-
as.character(studies$comparison[!selmulti])
}
##
if (min(eigen(V, only.values = TRUE)$values)<0)
stop("Covariance matrix is not non-negative definite.")
fX <- function(n) {
possK <- n * (n - 1) / 2
X <- matrix(0, nrow = possK, ncol = n - 1)
X[1:(n - 1), 1:(n - 1)] <- diag(rep(-1, n - 1))
X[n * (n - 1) / 2, (n - 2):(n - 1)] <- cbind(1, -1)
if (n * (n - 1) / 2 - (n - 1) > 1) {
l <- n
j <- n - 2
u <- n + j - 1
for (k in 1:(n - 3)) {
X[l:u, k:(n - 1)] <- cbind(1, diag(rep(-1, n - k - 1)))
j <- j - 1
l <- u + 1
u <- l + j - 1
}
}
X
}
##
X.full <- fX(n)
rownames(X.full) <- trts.poss
colnames(X.full) <- trts.poss[1:n - 1]
##
X.obs2.design <- X.full[direct2$comparison, , drop = FALSE]
if (multiarm) {
num.basics.design <-
unlist(lapply(split(multistudies, multistudies$design),
function(x)
x$narms[1]
)
) - 1
##
basics <-
lapply(split(multistudies, multistudies$design),
function(x)
split(x, x$studlab)[[1]]$comparison
)
basics <- unsplit(basics, rep(1:length(multicomp), num.basics.design))
##
X.obs3.design <- X.full[as.character(basics), ]
rownames(X.obs3.design) <- rep(multicomp, num.basics.design)
X.obs <- rbind(X.obs2.design, X.obs3.design)
}
else
X.obs <- X.obs2.design
##
H <-
X.full %*% solve(t(X.obs) %*% solve(V) %*% X.obs) %*%
t(X.obs) %*% solve(V)
##
TE.net <- H %*% TE.dir
covTE.net.base <- solve(t(X.obs) %*% solve(V) %*% X.obs)
co <- NA
for (i in 1:(n - 2)) {
for (j in 2:(n - 1)) {
if (i != j && i < j) {
co <- c(co,
diag(covTE.net.base)[i] +
diag(covTE.net.base)[j] -
2 * covTE.net.base[i, j])
}
}
}
##
covTE.net <- c(diag(covTE.net.base), co[-1])
comps <- as.character(studies$comparison[!selmulti])
studlabs <- as.character(studies$studlab[!selmulti])
##
if (multiarm) {
comps <- c(comps, as.character(multistudies$comparison))
studlabs <- c(studlabs, as.character(multistudies$studlab))
}
X.obs.studies <- X.full[comps, ]
H.studies <- X.full %*%
solve(t(X.obs.studies) %*% solve(V.studies) %*% X.obs.studies) %*%
t(X.obs.studies) %*% solve(V.studies)
##
colnames(H.studies) <- studlabs
network <- data.frame(TE = TE.net, seTE = sqrt(covTE.net))
if (multiarm) {
len.designs <-
c(rep(1, length(direct2$comparison)),
unlist(lapply(compsplit(multicomp, sep.trts),
function(x)
length(x) - 1
)
)
)
freq <-
rep(c(direct2$n.2arm,
unlist(lapply(split(multistudies, multistudies$design),
function(x)
length(names(table(x$studlab)))
)
)
),
len.designs)
narms <-
rep(c(rep(2, nrow(direct2)),
unlist(lapply(compsplit(multicomp, sep.trts),
function(x)
length(x)
)
)
),
len.designs)
##
design <-
data.frame(design = c(direct2$comparison,
rep(multicomp,
unlist(lapply(compsplit(multicomp, sep.trts),
function(x)
length(x)
)
) - 1
)
),
comparison = c(direct2$comparison,
as.character(unlist(
lapply(split(multistudies,
multistudies$design),
function(x)
as.character(
unlist(
split(x, x$studlab)[[1]]["comparison"]
)
)
)
)
)
),
narms = narms,
freq = freq,
TE.dir = TE.dir,
seTE.dir = sqrt(diag(V)))
}
else {
len.designs <- c(rep(1, length(direct2$comparison)))
freq <- rep(c(direct2$n.2arm), len.designs)
narms <- rep(c(rep(2, nrow(direct2))), len.designs)
##
design <- data.frame(design = colnames(V),
comparison = colnames(V),
narms = rep(2, length(direct2$comparison)),
freq = direct2$n.2arm,
TE.dir = TE.dir,
seTE.dir = sqrt(diag(V)))
}
##
rownames(design) <- NULL
##
design <-
data.frame(design,
TE.net = network[as.character(design$comparison), "TE"],
seTE.net = network[as.character(design$comparison), "seTE"])
if (multiarm)
studies <- rbind(studies[!selmulti, ], multistudies[, 1:8])
##
studies <- studies[, c("studlab", "treat1", "treat2",
"TE", "seTE", "narms",
"design", "comparison")]
##
studies <- merge(studies, design[, names(design) != "narms"],
by = c("design", "comparison"))
##
studies <- studies[, c("studlab", "design", "comparison", "treat1", "treat2",
"narms", "freq", "TE", "seTE",
"TE.dir", "seTE.dir", "TE.net", "seTE.net")]
##
studies_lim <- studies[which(studies$narms == 2), ]
studies_mult <- studies[which(studies$narms > 2), ]
studies <-
rbind(studies_lim[order(studies_lim$studlab), ],
studies_mult[
do.call(order, studies_mult[, c("studlab","treat1","treat2")]), ])
res <- list(n = n,
k = x$k,
d = length(unique(design$design)),
trts = trts,
comparisons = comparisons,
studies = studies,
direct = direct,
network = network,
design = design,
multicomp = if (multiarm) multicomp else NULL,
X.obs = X.obs,
X.full = X.full,
V = V,
V.studies = V.studies,
H = H,
H.studies = H.studies,
sep.trts = sep.trts)
class(res) <- "nma.krahn"
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.