R/nma.krahn.R

Defines functions nma.krahn

nma.krahn <- function(x, reference.group = x$reference.group,
                      tau.preset = 0, sep.trts = x$sep.trts) {
  
  
  chkclass(x, "netmeta")
  
  
  if (is.na(tau.preset))
    tau.preset <- 0
  
  
  if (is.null(sep.trts))
    sep.trts <- ":"
  
  
  n <- x$n


  if (reference.group == "")
    trts <- colnames(x$A.matrix)
  else
    trts <- c(reference.group,
              colnames(x$A.matrix)[colnames(x$A.matrix) != reference.group])


  studies.pre <- data.frame(studlab = x$studlab,
                            treat1 = x$treat1, treat2 = x$treat2,
                            TE = -x$TE,
                            seTE = sqrt(x$seTE^2 + tau.preset^2),
                            narms = x$narms[match(x$studlab, x$studies)],
                            stringsAsFactors = FALSE)
  ##
  studies <- studies.pre <- studies.pre[order(studies.pre$studlab), ]


  twoarm   <- any(studies$narms == 2)
  multiarm <- any(studies$narms > 2)
  selmulti <- studies$narms > 2


  sel <- studies.pre$treat2 == reference.group
  ##
  studies$treat1[sel] <- studies.pre$treat2[sel]
  studies$treat2[sel] <- studies.pre$treat1[sel]
  studies$TE[sel] <- -studies.pre$TE[sel]
  studies <- data.frame(studies,
                        comparison = paste(studies$treat1, studies$treat2, sep = sep.trts))


  comparison.num.poss <- n * (n - 1) / 2
  comparisons <- levels(factor(as.character(studies$comparison)))
  comparison.num <- length(comparisons)


  trts.poss <- rep(NA, comparison.num.poss)
  k <- 1
  for (i in 1:(n - 1))
    for (j in (i + 1):n) {
      trts.poss[k] <- paste(trts[i], trts[j], sep = sep.trts)
      k <- k + 1
    }


  direct <- matrix(NA, nrow = comparison.num, ncol = 6)
  ##
  colnames(direct) <- c("comparison", "TE", "seTE",
                        "TE.2arm", "seTE.2arm", "n.2arm")
  ##
  direct <- data.frame(direct)
  j <- 0
  ##
  for (i in names(table(studies$comparison))) {
    j <- j + 1
    ##
    TE.i <- studies$TE[studies$comparison == i]
    seTE.i <- studies$seTE[studies$comparison == i]
    m1 <-
      suppressWarnings(metagen(TE.i, seTE.i, sm = x$sm,
                               method.tau = "DL", method.tau.ci = "",
                               warn = FALSE))
    ##
    direct$comparison[j] <- i
    direct$TE[j] <- m1$TE.common
    direct$seTE[j] <- m1$seTE.common
    ##
    if (sum(studies$comparison == i & !selmulti) > 0) {
      TE.i   <- studies$TE[studies$comparison == i & studies$narms == 2]
      seTE.i <- studies$seTE[studies$comparison == i & studies$narms == 2]
      m2 <-
        suppressWarnings(metagen(TE.i, seTE.i, sm = x$sm,
                                 method.tau = "DL", method.tau.ci = "",
                                 warn = FALSE))
      ##
      direct$TE.2arm[j] <- m2$TE.common
      direct$seTE.2arm[j] <- m2$seTE.common
      direct$n.2arm[j] <- m2$k
    }
  }


  if (multiarm) {
    multistudies <-
      split(studies[selmulti, ], as.character(studies$studlab[selmulti]))
    multistudies <-
      lapply(multistudies,
             function(x)
               x[which(x$treat1 == names(which.max(table(x$treat1)))), ]
             )
    multistudies <-
      lapply(multistudies,
             function(x)
               x[order(x$treat2), ]
             )
    ##
    des <-
      lapply(multistudies,
             function(x)
               paste(c(x$treat1[1], x$treat2), collapse = sep.trts)
             )
    multistudies <-
      data.frame(unsplit(multistudies,
                         rep(names(multistudies),
                             unlist(lapply(multistudies,
                                           function(x)
                                             nrow(x)
                                           )
                                    )
                             )
                         ),
                 design = unsplit(des,
                                  rep(names(multistudies),
                                      unlist(lapply(multistudies,
                                                    function(x)
                                                      nrow(x)
                                                    )
                                             )
                                      )
                                  )
                 )
    ##
    multistudies <-
      data.frame(multistudies,
                 des = paste(multistudies$comparison, multistudies$design,
                             sep = "_"))
    ##
    row.names(studies) <- NULL
    multistudies2 <-
      split(studies[selmulti, ], as.character(studies$studlab[selmulti]))
    multistudies2 <-
      lapply(multistudies2,
             function(x)
               x[do.call(order, x[, c("treat1","treat2")]), ]
             )
    multistudies2 <-
      lapply(multistudies2,
             function(x)
               rbind(
                 x[x$treat1 == names(which.max(table(x$treat1))), ],
                 x[x$treat1 %in%
                   names(table(x$treat1)[-which.max(table(x$treat1))]), ])
             )
    multistudies2 <-
      unsplit(multistudies2,
              rep(names(multistudies2),
                  unlist(lapply(multistudies2,
                                function(x)
                                  nrow(x)
                                )
                         )
                  )
              )
  }
  
  studies <- data.frame(studies, design = studies$comparison)
  if (multiarm & sum(is.na(direct$seTE.2arm)) > 0)
    direct2 <- data.frame(direct[!is.na(direct$seTE.2arm), ])
  else
    direct2 <- direct
  ##
  direct2 <- data.frame(direct2)
  
  if (length(unique(studies$comparison)) == 1) {
    res <- list(n = 2)
    ##
    class(res) <- "nma.krahn"
    ##
    return(res)
  }
  
  V.design <- diag(direct2$seTE.2arm^2,
                   nrow = length(direct2$seTE.2arm),
                   ncol = length(direct2$seTE.2arm))
  
  
  if (multiarm) {
    sp <- split(multistudies2, multistudies2$studlab)
    armM <- unlist(lapply(split(multistudies2$narms, multistudies2$studlab),
                          function(x)
                            x[1]
                          )
                   )
    ##
    covs <-
      lapply(sp,
             function(x) {
               n <- x$narms[1]
               k <- 0
               m <- matrix(NA, nrow = n - 1, ncol = n - 1)
               for (i in 1:(n - 2)) {
                 for (j in (i + 1):(n - 1)) {
                   m[i, j] <-
                     (x$seTE[i]^2 + x$seTE[j]^2 - x$seTE[n + k]^2) / 2
                   m[j, i] <-
                     (x$seTE[i]^2 + x$seTE[j]^2 - x$seTE[n + k]^2) / 2
                   k <- k + 1
                 }
               }
               diag(m) <- x$seTE[1:(n - 1)]^2
               m
             }
             )
    ##
    V3 <- NA
    ##
    for (i in 1:length(covs))
      V3 <- adiag(V3, covs[[i]])
    ##
    V3 <- V3[-1, -1]
    ##
    if (sum(!selmulti) == 0) {
      V.studies <- V3
    }
    else {
      if (sum(!selmulti) < 2)
        V.2arm <- matrix(studies$seTE[!selmulti]^2)
      else
        V.2arm <- diag(studies$seTE[!selmulti]^2)
      ##
      V.studies <- adiag(V.2arm, V3)
    }
    colnames(V.studies) <- c(as.character(studies$design[!selmulti]),
                             as.character(multistudies$design))
    rownames(V.studies) <- c(as.character(studies$design[!selmulti]),
                             as.character(multistudies$design))
    ##
    multicomp <- names(which(table(multistudies$design) > 0))
    V3.agg <- NA
    TE.agg <- NA
    ##
    for (i in 1:length(multicomp)) {
      studlabM <-
        unique(multistudies$studlab[multistudies$design == multicomp[i]])
      ncovs <- covs[names(covs) %in% studlabM]
      l <- sapply(ncovs, solve)
      dim <- multistudies$narms[multistudies$studlab == studlabM[1]][1] - 1
      covs3 <- solve(matrix(apply(l, 1, sum), nrow = dim))
      V3.agg <- adiag(V3.agg, covs3)
      m <- matrix(NA, nrow = dim, ncol = length(studlabM))
      for (j in 1:length(studlabM))
        m[, j] <- matrix(l[, j], nrow = dim) %*%
          multistudies$TE[multistudies$studlab == studlabM[j]]
      ##
      TE.agg <- c(TE.agg, covs3 %*% apply(m, 1, sum))
    }
    
    TE.agg <- TE.agg[-1]
    V3.agg <- V3.agg[-1, -1]

    V <- adiag(V.design, V3.agg)
    ##
    nam <-
      rep(multicomp,
          unlist(lapply(split(multistudies, multistudies$design),
                        function(x)
                          x$narms[1]
                        )
                 ) - 1
          )
    ##
    if (any(twoarm))
      rownames(V) <- colnames(V) <- c(direct2$comparison, nam)
    else
      rownames(V) <- colnames(V) <- nam
    ##
    TE.dir <- c(direct2$TE.2arm, TE.agg)
  }
  else {
    V <- adiag(V.design)
    rownames(V) <- direct2$comparison
    colnames(V) <- direct2$comparison
    TE.dir <- direct2$TE.2arm
    V.studies <- diag(studies$seTE[!selmulti]^2)
    colnames(V.studies) <- rownames(V.studies) <-
      as.character(studies$comparison[!selmulti])
  }
  ##
  if (min(eigen(V, only.values = TRUE)$values)<0)
    stop("Covariance matrix is not non-negative definite.")


  fX <- function(n) {
    possK <- n * (n - 1) / 2
    X <- matrix(0, nrow = possK, ncol = n - 1)
    X[1:(n - 1), 1:(n - 1)] <- diag(rep(-1, n - 1))
    X[n * (n - 1) / 2, (n - 2):(n - 1)] <- cbind(1, -1)
    if (n * (n - 1) / 2 - (n - 1) > 1) {
      l <- n
      j <- n - 2
      u <- n + j - 1
      for (k in 1:(n - 3)) {
        X[l:u, k:(n - 1)] <- cbind(1, diag(rep(-1, n - k - 1)))
        j <- j - 1
        l <- u + 1
        u <- l + j - 1
      }
    }
    X
  }
  ##
  X.full <- fX(n)
  rownames(X.full) <- trts.poss
  colnames(X.full) <- trts.poss[1:n - 1]
  ##
  X.obs2.design <- X.full[direct2$comparison, , drop = FALSE]
  
  
  if (multiarm) {
    num.basics.design <-
      unlist(lapply(split(multistudies, multistudies$design),
                    function(x)
                      x$narms[1]
                    )
             ) - 1
    ##
    basics <-
      lapply(split(multistudies, multistudies$design),
             function(x)
               split(x, x$studlab)[[1]]$comparison
             )
    basics <- unsplit(basics, rep(1:length(multicomp), num.basics.design))
    ##
    X.obs3.design <- X.full[as.character(basics), ]
    rownames(X.obs3.design) <- rep(multicomp, num.basics.design)
    X.obs <- rbind(X.obs2.design, X.obs3.design)
  }
  else
    X.obs <- X.obs2.design
  ##
  H <-
    X.full %*% solve(t(X.obs) %*% solve(V) %*% X.obs) %*%
    t(X.obs) %*% solve(V)
  ##
  TE.net <- H %*% TE.dir
  
  
  covTE.net.base <- solve(t(X.obs) %*% solve(V) %*% X.obs)
  co <- NA
  for (i in 1:(n - 2)) {
    for (j in 2:(n - 1)) {
      if (i != j && i < j) {
        co <- c(co,
                diag(covTE.net.base)[i] +
                diag(covTE.net.base)[j] -
                2 * covTE.net.base[i, j])
      }
    }
  }
  ##
  covTE.net <- c(diag(covTE.net.base), co[-1])


  comps <- as.character(studies$comparison[!selmulti])
  studlabs <- as.character(studies$studlab[!selmulti])
  ##
  if (multiarm) {
    comps <- c(comps, as.character(multistudies$comparison))
    studlabs <- c(studlabs, as.character(multistudies$studlab))
  }


  X.obs.studies <- X.full[comps, ]


  H.studies <- X.full %*%
    solve(t(X.obs.studies) %*% solve(V.studies) %*% X.obs.studies) %*%
      t(X.obs.studies) %*% solve(V.studies)
  ##
  colnames(H.studies) <- studlabs


  network <- data.frame(TE = TE.net, seTE = sqrt(covTE.net))


  if (multiarm) {
    len.designs <-
      c(rep(1, length(direct2$comparison)),
        unlist(lapply(compsplit(multicomp, sep.trts),
                      function(x)
                        length(x) - 1
                      )
               )
        )
    freq <-
      rep(c(direct2$n.2arm,
            unlist(lapply(split(multistudies, multistudies$design),
                          function(x)
                            length(names(table(x$studlab)))
                          )
                   )
            ),
          len.designs)
    narms <-
      rep(c(rep(2, nrow(direct2)),
            unlist(lapply(compsplit(multicomp, sep.trts),
                          function(x)
                            length(x)
                          )
                   )
            ),
          len.designs)
    ##
    design <-
      data.frame(design = c(direct2$comparison,
                            rep(multicomp,
                                unlist(lapply(compsplit(multicomp, sep.trts),
                                              function(x)
                                                length(x)
                                              )
                                       ) - 1
                                )
                            ),
                 comparison = c(direct2$comparison,
                                as.character(unlist(
                                  lapply(split(multistudies,
                                               multistudies$design),
                                         function(x)
                                           as.character(
                                             unlist(
                                               split(x, x$studlab)[[1]]["comparison"]
                                             )
                                           )
                                         )
                                )
                                )
                                ),
                 narms = narms,
                 freq = freq,
                 TE.dir = TE.dir,
                 seTE.dir = sqrt(diag(V)))
  }
  else {
    len.designs <- c(rep(1, length(direct2$comparison)))
    freq <- rep(c(direct2$n.2arm), len.designs)
    narms <- rep(c(rep(2, nrow(direct2))), len.designs)
    ##
    design <- data.frame(design = colnames(V),
                         comparison = colnames(V),
                         narms = rep(2, length(direct2$comparison)),
                         freq = direct2$n.2arm,
                         TE.dir = TE.dir,
                         seTE.dir = sqrt(diag(V)))
  }
  ##
  rownames(design) <- NULL
  ##
  design <-
    data.frame(design,
               TE.net = network[as.character(design$comparison), "TE"],
               seTE.net = network[as.character(design$comparison), "seTE"])
  

  if (multiarm)
    studies <- rbind(studies[!selmulti, ], multistudies[, 1:8])
  ##
  studies <- studies[, c("studlab", "treat1", "treat2",
                         "TE", "seTE", "narms",
                         "design", "comparison")]
  ##
  studies <- merge(studies, design[, names(design) != "narms"],
                   by = c("design", "comparison"))
  ##
  studies <- studies[, c("studlab", "design", "comparison", "treat1", "treat2",
                         "narms", "freq", "TE", "seTE",
                         "TE.dir", "seTE.dir", "TE.net", "seTE.net")]
  ##
  studies_lim <- studies[which(studies$narms == 2), ]
  studies_mult <- studies[which(studies$narms > 2), ]
  studies <-
    rbind(studies_lim[order(studies_lim$studlab), ],
          studies_mult[
            do.call(order, studies_mult[, c("studlab","treat1","treat2")]), ])

  res <- list(n = n,
              k = x$k,
              d = length(unique(design$design)),
              trts = trts,
              comparisons = comparisons,
              studies = studies,
              direct = direct,
              network = network,
              design = design,
              multicomp = if (multiarm) multicomp else NULL,
              X.obs = X.obs,
              X.full = X.full,
              V = V,
              V.studies = V.studies,
              H = H,
              H.studies = H.studies,
              sep.trts = sep.trts)

  class(res) <- "nma.krahn"

  res
}

Try the netmeta package in your browser

Any scripts or data that you put into this service are public.

netmeta documentation built on June 23, 2024, 9:06 a.m.