R/rank.interval.R

Defines functions rank_intervals

Documented in rank_intervals

#' @title Rank interval of nodes
#' @description Calculate the maximal and minimal rank possible for each node
#'    in any ranking that is in accordance with the partial ranking `P`.
#' @param P A partial ranking as matrix object calculated with [neighborhood_inclusion]
#'    or [positional_dominance].
#' @details Note that the returned `mid_point` is not the same as the expected
#' rank, for instance computed with [exact_rank_prob].
#' It is simply the average of `min_rank` and `max_rank`. For exact rank probabilities
#' use [exact_rank_prob].
#' @return An object of type netrankr_interval
#' @author David Schoch
#' @seealso [exact_rank_prob]
#'
#' @examples
#' P <- matrix(c(0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, rep(0, 10)), 5, 5, byrow = TRUE)
#' rank_intervals(P)
#' @export
rank_intervals <- function(P) {
  if (!inherits(P, "Matrix") & !is.matrix(P)) {
    stop("P must be a dense or spare matrix")
  }
  if (!is.binary(P)) {
    stop("P is not a binary matrix")
  }

  n <- nrow(P)
  max_rank_all <- n - Matrix::rowSums((P - Matrix::t(P)) == 1) - Matrix::rowSums(P == 1 & Matrix::t(P) == 1) # CAUTION!!!!
  min_rank_all <- Matrix::colSums((P - Matrix::t(P)) == 1) + 1
  mid_point_all <- (max_rank_all + min_rank_all) / 2

  if (is.null(rownames(P))) {
    names <- paste0("V", 1:nrow(P))
  } else {
    names <- rownames(P)
  }

  res <- data.frame(
    node = names,
    min_rank = min_rank_all,
    max_rank = max_rank_all,
    mid_point = mid_point_all
  )
  class(res) <- c("netrankr_interval", class(res))
  return(res)
}

Try the netrankr package in your browser

Any scripts or data that you put into this service are public.

netrankr documentation built on Sept. 27, 2022, 1:07 a.m.