Nothing
#' Discrete Lindley Distribution
#' @export
#' @name dLd1
#' @param x,q vector of quantiles.
#' @param theta a parameter.
#' @param p vector of probabilities.
#' @param n number of observations. If \code{length(n) > 1}, the length is taken
#' to be the number required.
#' @param log,log.p logical; if TRUE, probabilities p are given as log(p).
#' @param lower.tail logical; if TRUE (default), probabilities are
#' \eqn{P\left[ X\leq x\right]}, otherwise, \eqn{P\left[ X>x\right] }.
#' @description
#' Density, distribution function, quantile function and random generation for
#' the discrete Lindley distribution.
#' @return \code{ddLd1} gives the density, \code{pdLd1} gives the distribution
#' function, \code{qdLd1} gives the quantile function and \code{rdLd1} generates
#' random deviates.
#' @details
#' The Discrete Lindley distribution with a parameter \eqn{\theta}, has density
#' \deqn{f\left( x\right) =\frac{\lambda ^{x}}{1-\log \lambda }
#' \left( \lambda \log\lambda +\left( 1-\lambda \right)
#' \left( 1-\log \lambda^{x+1}\right)\right), }
#' where
#' \deqn{x=0,1,...,~\theta >0~and~\lambda =e^{-\theta }.}
#' @references Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011,
#' *The discrete Lindley distribution: properties and applications*.Journal of
#' statistical computation and simulation, 81 (11), 1405-1416.
#' @examples
#' library(new.dist)
#' ddLd1(1,theta=2)
ddLd1<-function(x,theta,log=FALSE)
{
x<-floor(x)
if(any(theta<=0)) {stop("theta must be > 0")}
enuzun <- max(length(x),length(theta))
x<-rep(x,enuzun/length(x)+1)[1:enuzun]
theta<-rep(theta,enuzun/length(theta)+1)[1:enuzun]
pdf<-NULL
lambda<-exp(-theta)
for (i in 1:enuzun)
{
if(x[i]<0) {pdf[i]<-0} else
{pdf[i]<-(lambda[i]^x[i]/(1-log(lambda[i])))*(lambda[i]*log(lambda[i])+
(1-lambda[i])*(1-log(lambda[i]^(x[i]+1))))}
}
if(log==TRUE) pdf<-log(pdf)
return(pdf)
}
#' Discrete Lindley Distribution
#' @export
#' @rdname dLd1
#' @examples
#' pdLd1(2,theta=1)
pdLd1<-function(q,theta,lower.tail=TRUE,log.p=FALSE)
{
q<-floor(q)
if(any(theta<=0)) {stop("theta must be > 0")}
enuzun <- max(length(q),length(theta))
q<-rep(q,enuzun/length(q)+1)[1:enuzun]
theta<-rep(theta,enuzun/length(theta)+1)[1:enuzun]
cdf<-NULL
lambda<-exp(-theta)
for (i in 1:enuzun)
{
if (q[i]>=0) cdf[i]<-(1-(lambda[i]^(q[i]+1))+(((2+q[i])*
lambda[i]^(q[i]+1))-1)*log(lambda[i]))/(1-log(lambda[i])) else cdf[i]<-0
}
if(lower.tail==FALSE) cdf<-1-cdf
if(log.p==TRUE) cdf<-log(cdf)
return(cdf)
}
#' Discrete Lindley Distribution
#' @export
#' @rdname dLd1
#' @examples
#' qdLd1(.993,theta=2)
qdLd1<-function(p,theta,lower.tail=TRUE)
{
if(any(p<0)|any(p>1)) {stop("p must be between >= 0 and <= 1")}
if(any(theta<=0)) {stop("theta must be > 0")}
enuzun <- max(length(p),length(theta))
p<-rep(p,enuzun/length(p)+1)[1:enuzun]
theta<-rep(theta, enuzun/length(theta)+1)[1:enuzun]
quant<-NULL
lambda<-exp(-theta)
for (i in 1:enuzun)
{
x<-0
t<-0
while(t<p[i]){
t<-pdLd1(x,theta[i])
x<-x+1
}
quant[i]<-x-1
}
if(lower.tail==FALSE)
{
for (i in 1:enuzun)
{
x<-0
t<-0
while(t<(1-p[i])){
t<-pdLd1(x,theta[i])
x<-x+1
}
quant[i]<-x-1
}
}
{
return(quant)
}
}
#' Discrete Lindley Distribution
#' @export
#' @rdname dLd1
#' @examples
#' rdLd1(10,theta=1)
rdLd1<-function(n,theta) suppressWarnings(
{
n<-floor(n)
if(any(n<1)) {stop("n must be >= 1")}
if(any(theta<=0)) {stop("theta must be > 0")}
rn<-qdLd1(stats::runif(n),theta)
return(rn)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.