Nothing
#' Bernoulli point process detection model
#'
#' Density and random generation functions of the Bernoulli point process for detection.
#'
#' The \code{dbernppDetection_normal} distribution is a NIMBLE custom distribution which can be used to model and simulate
#' Bernoulli observations (\emph{x}) of a single individual in continuous space over a set of detection windows defined by their upper and lower
#' coordinates (\emph{lowerCoords,upperCoords}). The distribution assumes that an individual’s detection probability
#' follows an isotropic multivariate normal centered on the individual's activity center (\emph{s}) with standard deviation (\emph{sd}).
#'
#' @name dbernppDetection_normal
#'
#' @param x Vector with three elements representing the x- and y-coordinates and the id of the corresponding detection window for a single spatial point (detection location) scaled to the habitat (see (\code{\link{scaleCoordsToHabitatGrid}}).
#' @param n Integer specifying the number of realisations to generate. Only n = 1 is supported.
#' @param lowerCoords,upperCoords Matrices of lower and upper x- and y-coordinates of all detection windows scaled to the habitat (see (\code{\link{scaleCoordsToHabitatGrid}}). One row for each window. Each window should be of size 1x1.
#' @param s VVector of x- and y-coordinates of the isotropic bivariate normal distribution mean (i.e. the AC location)..
#' @param sd Standard deviation of the isotropic bivariate normal distribution.
#' @param baseIntensities Vector of baseline detection intensities for all detection windows.
#' @param numWindows Number of detection windows. This value (positive integer) is used to truncate \code{lowerCoords} and \code{upperCoords}
#' so that extra rows beyond \code{numWindows} are ignored.
#' @param indicator Binary argument specifying whether the individual is available for detection (indicator = 1) or not (indicator = 0).
#' @param log Logical argument, specifying whether to return the log-probability of the distribution.
#'
#' @return
#' \code{dbernppDetection_normal} gives the (log) probability density of the observation vector \code{x}.
#' \code{rbernppDetection_normal} gives coordinates of a randomly generated spatial point.
#'
#' @author Wei Zhang and Cyril Milleret
#'
#' @import nimble
#' @importFrom stats dnorm
#'
#' @references
#'
#' W. Zhang, J. D. Chipperfield, J. B. Illian, P. Dupont, C. Milleret, P. de Valpine and R. Bischof. 2020.
#' A hierarchical point process model for spatial capture-recapture data. bioRxiv. DOI 10.1101/2020.10.06.325035
#'
#' @examples
#' coordsHabitatGridCenter <- matrix(c(0.5, 3.5,
#' 1.5, 3.5,
#' 2.5, 3.5,
#' 3.5, 3.5,
#' 0.5, 2.5,
#' 1.5, 2.5,
#' 2.5, 2.5,
#' 3.5, 2.5,
#' 0.5, 1.5,
#' 1.5, 1.5,
#' 2.5, 1.5,
#' 3.5, 1.5,
#' 0.5, 0.5,
#' 1.5, 0.5,
#' 2.5, 0.5,
#' 3.5, 0.5), ncol = 2,byrow = TRUE)
#' colnames(coordsHabitatGridCenter) <- c("x","y")
#' # Create observation windows
#' lowerCoords <- matrix(c(0, 0, 1, 0, 0, 1, 1, 1), nrow = 4, byrow = TRUE)
#' upperCoords <- matrix(c(1, 1, 2, 1, 1, 2, 2, 2), nrow = 4, byrow = TRUE)
#' colnames(lowerCoords) <- colnames(upperCoords) <- c("x","y")
#' # Rescale coordinates
#' ScaledLowerCoords <- scaleCoordsToHabitatGrid(coordsData = lowerCoords,
#' coordsHabitatGridCenter = coordsHabitatGridCenter)
#' ScaledUpperCoords <- scaleCoordsToHabitatGrid(coordsData = upperCoords,
#' coordsHabitatGridCenter = coordsHabitatGridCenter)
#' ScaledUpperCoords$coordsDataScaled[,2] <- ScaledUpperCoords$coordsDataScaled[,2] + 1.5
#' ScaledLowerCoords$coordsDataScaled[,2] <- ScaledLowerCoords$coordsDataScaled[,2] - 1.5
#'
#'
#' s <- c(1, 1)
#' sd <- 0.1
#' baseIntensities <- c(1:4)
#' windowIndex <- 4
#' numPoints <- 1
#' numWindows <- 4
#' indicator <- 1
#' x <- c(0.5, 2)
#' windowIndex <- getWindowIndex(curCoords = x,
#' lowerCoords = ScaledLowerCoords$coordsDataScaled,
#' upperCoords =ScaledUpperCoords$coordsDataScaled)
#' x <- c(x, windowIndex)
#'
#' dbernppDetection_normal(x, lowerCoords, upperCoords,
#' s, sd, baseIntensities
#' , numWindows,
#' indicator, log = TRUE)
NULL
#' @rdname dbernppDetection_normal
#' @export
dbernppDetection_normal <- nimbleFunction(
run = function(
x = double(1),
lowerCoords = double(2),
upperCoords = double(2),
s = double(1),
sd = double(0),
baseIntensities = double(1),
numWindows = integer(0),
indicator = integer(0),
log = integer(0, default = 0)
) {
## If the individual does not exists
if(indicator == 0) {
if(x[3] == 0){
if(log) return(0.0) else return(1.0)
} else {
if(log) return(-Inf) else return(0.0)
}
}
## Make sure individuals with indicator==1 have one detection (necessary for dead recovery)
if(indicator == 1) {
if(x[3] == 0) {
if(log) return(-Inf) else return(0.0)
}
}
## Integrate the detection intensity over all detection windows
windowIntensities <- integrateIntensity_normal(lowerCoords = lowerCoords[1:numWindows,,drop = FALSE],
upperCoords = upperCoords[1:numWindows,,drop = FALSE],
s = s,
baseIntensities = baseIntensities[1:numWindows],
sd = sd,
numWindows =numWindows)
sumIntensity <- sum(windowIntensities) ## Expected total number of detections
## Make sure sumIntensity is positive
if(sumIntensity <= 0.0) {
if(log) return(-Inf)
else return(0.0)
}
# numDims <- 2
# logPointIntensity <- (numDims / 2.0) * log(2.0 * pi) + log(baseIntensities[windowIndex]) + sum(dnorm((x - s) / sd, log = 1))
logPointIntensity <- 1.837877 + log(baseIntensities[x[3]]) + sum(dnorm((x[1:2] - s) / sd, log = 1))
## Log probability density
logProb <- logPointIntensity - log(sumIntensity)
if(log) return(logProb)
else return(exp(logProb))
returnType(double(0))
}
)
NULL
#' @rdname dbernppDetection_normal
#' @export
rbernppDetection_normal <- nimbleFunction(
run = function(
n = integer(0),
lowerCoords = double(2),
upperCoords = double(2),
s = double(1),
sd = double(0),
baseIntensities = double(1),
numWindows = integer(0),
indicator = integer(0)
) {
## Ensure that only one sample is requested
if(n <= 0) {
stop("The number of requested samples must be above zero")
} else if(n > 1) {
print("rbernppDetection_normal only allows n = 1; using n = 1")
}
if(indicator==0){return(c(0,0,0))}else{
## Integrate the detection intensity over all detection windows
windowIntensities <- integrateIntensity_normal(lowerCoords = lowerCoords[1:numWindows,,drop = FALSE],
upperCoords = upperCoords[1:numWindows,,drop = FALSE],
s = s,
baseIntensities = baseIntensities[1:numWindows],
sd = sd,
numWindows = numWindows)
## Call the statified rejection sampler
outCoordinates <- stratRejectionSampler_normal(numPoints = 1,
lowerCoords = lowerCoords[1:numWindows,,drop = FALSE],
upperCoords = upperCoords[1:numWindows,,drop = FALSE],
s = s,
windowIntensities = windowIntensities[1:numWindows],
sd = sd)
windowIndex <- getWindowIndex(curCoords = outCoordinates[1, 1:2],
lowerCoords = lowerCoords[1:numWindows,,drop = FALSE] ,
upperCoords = upperCoords[1:numWindows,,drop = FALSE] )
return(c(outCoordinates[1,],windowIndex))
}
returnType(double(1))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.