Nothing
# test-empca.R
# see setup-expectations.R for expect_aligned function
test_that("Fitted values", {
# Published examples of NIPALS with missing values are
# extremely rare. Here is an example of estimating the missing values
# using XLSTAT (details on methodology are limited)
# https://help.xlstat.com/customer/en/portal/articles/2062415-missing-data-imputation-using-nipals-in-excel?b_id=9283
# Circa 2017 XLSTAT estimated the missing values below as 1365.2, 88.6 etc
# In 2019 XLSTAT generates different values.
auto <- data.frame(capacity = c(1396, 1721, 1580, 1769, 2068, 1769L),
power = c(90, 92, 83, 90, 88, 90L),
speed = c(174, 180, 170, 180, 180, 182L),
weight = c(850, 965, 970, 1080, 1135, 1060L),
length = c(369, 415, 395, 440, 446, 424L),
width = c(166, 169, 170, 169, 170, 168L))
rownames(auto) <- c("Honda civic", "Renault 19", "Fiat Tipo",
"Peugeot 405", "Renault 21", "Citroen BX")
# 1 missing value
auto1 <- auto
auto1[1,1] <- NA
# 2 missing values
auto2 <- auto
auto2[1,1] <- auto2[2,2] <- NA
# 6 missing values along the diagonal
auto6 <- auto
diag(auto6) <- NA
# complete-data eigenvalues
# R> round(empca(auto)$eig,2)
# [1] 4.39 3.04 0.99 0.62 0.37 0.00
# R> round(nipals(auto)$eig,2)
# [1] 4.39 3.04 0.99 0.62 0.37 0.00
# m1 <- empca(auto1, fitted=TRUE, tol=1e-9, gramschmidt=FALSE)
# for comparing with python
# m1 <- empca(auto, center=FALSE, scale=FALSE)
#
# m1 <- empca(auto1[,1:5], w=1 * !is.na(auto1[,1:5]),
# center=FALSE, scale=FALSE,
# gramschmidt=FALSE, verbose=2)
# lucid(t(m1$eig * t(m1$scores)))
# lucid(m1$loadings)
library(nipals)
# These settings give results similar to XLstat
m1 <- nipals(auto, fitted=TRUE, tol=1e-9, gramschmidt=FALSE)
expect_equal(diag(m1$fitted),
c(1365.236, 88.600, 175.798, 1051.698, 432.470, 168.554),
tol=1e-1)
# Test Github issue #2
expect_silent(nipals(auto[,-1], ncomp=1, fitted=TRUE))
})
test_that("Code coverage of nipals function arguments", {
B <- matrix(c(50, 67, 90, 98, 120,
55, 71, 93, 102, 129,
65, 76, 95, 105, 134,
50, 80, 102, 130, 138,
60, 82, 97, 135, 151,
65, 89, 106, 137, 153,
75, 95, 117, 133, 155), ncol=5, byrow=TRUE)
rownames(B) <- c("G1","G2","G3","G4","G5","G6","G7")
colnames(B) <- c("E1","E2","E3","E4","E5")
library(nipals)
Bnarow = B
Bnarow[1,] = NA
expect_error(nipals(Bnarow))
Bnacol = B
Bnacol[,1] = NA
expect_error(nipals(Bnacol))
B2 = B
B2[1,1] = B2[2,1] = NA
B2wt <- 1*!is.na(B2)
# ncomp
m1 = nipals(B2, ncomp=1)
# center/scale
m1 = nipals(B2, center=FALSE, scale=FALSE)
m1 = nipals(B2, center=TRUE, scale=FALSE)
m1 = nipals(B2, center=TRUE, scale=TRUE)
# maxiter
expect_warning(nipals(B, maxiter=2))
# tol
m1 = nipals(B2, tol=1e-1, verbose=TRUE)
m1 = nipals(B2, tol=1e-10, verbose=TRUE)
# startcol
m1 = nipals(B, startcol=0, verbose=TRUE)
m1 = nipals(B, startcol=5, verbose=TRUE)
# fitted
expect_null(nipals(B)$fitted)
expect_null(nipals(B, fitted=FALSE)$fitted)
expect_false(is.null(nipals(B, fitted=TRUE)$fitted))
# force.na
m1 = nipals(B, force.na=FALSE)
m1 = nipals(B, force.na=TRUE)
# gramschmidt
m1 = nipals(B2, gramschmidt=FALSE) # default
round(crossprod(m1$loadings), 3) # 1 on diagonal, but not identity
m2 = nipals(B2, gramschmidt=TRUE)
round(crossprod(m2$loadings), 3) # should be identity 5x5
# verbose
m1 = nipals(B, verbose=TRUE)
})
test_that("Start column function", {
# corn data from C.Majer
corn <- structure(c(20.73, 23.58, 22.41, 19.97, 21.42, 24.48, 23.19, 25.73,
22.66, 23.93, 18.79, 18.56, 18.47, 18.33, 20.01, 19.03,
19.36, 21.2, 19.17, 18.17, 20.41, 17.67, 17.89, 21.41,
18.81, 22.77, NA, 19.86, 19.43, NA, 17.28, 14.9, 16.52,
14.77, 19.35, 22.46, 24.61, NA, NA, 26.16, NA, 19.48,
NA, 20.72, 17.8, 18.55, 19.56, 20.01, 20.05, 17.18,
16.29, 17.41, 15.86, 15.7, 17.84, 24.1, 27.02, 26.76,
26, 26.02, 20.63, 20.37, 21.17, 21.55, 19.12),
.Dim = c(5L, 13L),
.Dimnames = list(c("G1", "G2", "G3", "G4", "G5"),
c("E01", "E02", "E03", "E04", "E05",
"E06", "E07", "E08", "E09", "E10",
"E11", "E12", "E13")))
# specify the startcol as a function
expect_silent( nipals(corn, startcol=function(x) sum(abs(x), na.rm=TRUE)) )
# using column with maximum variance fails
# do NOT use this line...has problems when CRAN checks with --noLD
# expect_warning( nipals(corn, startcol=function(x) var(x, na.rm=TRUE)) )
})
test_that("Predictions from model", {
# choose 75% of rows for training sample
set.seed(42)
ix <- sample(nrow(iris), nrow(iris)*0.75)
iris.train <- iris[ix,1:4]
iris.test <- iris[-ix,1:4]
# Method 1: Assign a class to the nipals model
m1 <- nipals(iris.train, startcol=2)
class(m1) <- "princomp"
p1 <- predict(m1, newdata=iris.test)
# Method 2: Call stats:::predict.princomp
# m2 <- nipals(iris.train[,1:4])
# stats:::predict.princomp(m2, newdata=iris.test[,1:4])
# # prcomp uses x$rotation, princomp uses x$loadings
# m3 <- m1
# m3$rotation <- m3$loadings
# stats:::predict.prcomp(m3, newdata=iris.valid[,1:4])
#
# # princomp
# m4 <- princomp(iris.train[,1:4])
# predict(m4, newdata=iris.valid[,1:4])
})
# ----------------------------------------------------------------------------
## expect_allclose <- function(A, B, rtol=1e-5, atol=1e-8){
## # https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
## # a, b, rtol=1e-05, atol=1e-08, equal_nan=False
## # Returns True if two arrays are element-wise equal within a tolerance.
## # The tolerance values are positive, typically very small numbers.
## # The relative difference (rtol * abs(b)) and the absolute difference atol
## # are added together to compare against the absolute difference
## # between a and b.
## # If either array contains one or more NaNs, False is returned. Infs are treated as equal if they are in the same place and of the same sign in both arrays.
## # If the following equation is element-wise True, then allclose returns True.
## # absolute(a - b) <= (atol + rtol * absolute(b))
## # The above equation is not symmetric in a and b, so that allclose(a, b)
## # might be different from allclose(b, a) in some rare cases.
## diff <- abs(A-B) < (atol + rtol * abs(B))
## print(diff)
## expect_true(all(diff))
## }
## #expect_allclose(m1s$u, m1n$scores, rtol=1e-5, atol=1e-8)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.