Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- message = FALSE---------------------------------------------------------
library(nlpsem)
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
## ---- message = FALSE---------------------------------------------------------
load(system.file("extdata", "getLGCM_examples.RData", package = "nlpsem"))
## ---- message = FALSE, eval = FALSE-------------------------------------------
# # Load ECLS-K (2011) data
# data("RMS_dat")
# RMS_dat0 <- RMS_dat
# # Re-baseline the data so that the estimated initial status is for the
# # starting point of the study
# baseT <- RMS_dat0$T1
# RMS_dat0$T1 <- RMS_dat0$T1 - baseT
# RMS_dat0$T2 <- RMS_dat0$T2 - baseT
# RMS_dat0$T3 <- RMS_dat0$T3 - baseT
# RMS_dat0$T4 <- RMS_dat0$T4 - baseT
# RMS_dat0$T5 <- RMS_dat0$T5 - baseT
# RMS_dat0$T6 <- RMS_dat0$T6 - baseT
# RMS_dat0$T7 <- RMS_dat0$T7 - baseT
# RMS_dat0$T8 <- RMS_dat0$T8 - baseT
# RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# # Standardize time-invariant covariates (TICs)
# ## ex1 and ex2 are standardized growth TICs in models
# RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
# RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# xstarts <- mean(baseT)
## ---- message = FALSE, eval = FALSE-------------------------------------------
# Math_LGCM_BLS_f <- getLGCM(
# dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
# intrinsic = TRUE, records = 1:9, growth_TIC = NULL, res_scale = 0.1
# )
# Math_LGCM_BLS_r <- getLGCM(
# dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
# intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1
# )
## -----------------------------------------------------------------------------
getLRT(
full = Math_LGCM_BLS_f@mxOutput, reduced = Math_LGCM_BLS_r@mxOutput, boot = FALSE, rep = NA
)
## ---- message = FALSE, eval = FALSE-------------------------------------------
# paraBLS.TIC_LGCM.f <- c(
# "alpha0", "alpha1", "alpha2", "alphag",
# paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")),
# "residuals",
# paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")),
# paste0("mux", 1:2), paste0("phi", c("11", "12", "22")),
# "mueta0", "mueta1", "mueta2", "mu_knot"
# )
# Math_LGCM_TIC_BLS_f <- getLGCM(
# dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
# intrinsic = TRUE, records = 1:9, growth_TIC = c("ex1", "ex2"), res_scale = 0.1,
# paramOut = TRUE, names = paraBLS.TIC_LGCM.f
# )
## -----------------------------------------------------------------------------
Math_LGCM_TIC_BLS_f@Estimates
Figure1 <- getFigure(
model = Math_LGCM_TIC_BLS_f@mxOutput, nClass = NULL, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
show(Figure1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.