Description Usage Arguments Details Value Note Author(s) References See Also Examples
(CME) Classic multi stage estimate for nonlinear regression with heteroscedastic error, when variance is function of unkown parameters. The variance function model parameter estimate using pseudo chi-square likelihood of computed sample variance.
1 2 3 |
formula |
|
data |
list of data include responce and predictor. |
start |
list of parameter values of nonlinear model function (θ. |
control |
list of |
varmodel |
|
tau |
list of initial values for variance model function |
... |
extra arguments to nonlinear regression model, heteroscedastic variance function, robust loss function or its tuning constants. |
In stage 1 the nonlinear model parameter estimates by Classic OLS, Stage 2 compute sample variance of data, Stage 3 estimate the parameter of variance function model by maximizing the chi-square pseudo-likelihood function. Stage 4 estimate the final value of function model parameter by generalized least square.
generalized fitt object nl.fitt.gn
. The hetro
slot include parameter estimate and other information of fitt for heteroscedastic variance model.
parameters |
nonlinear regression parameter estimate of θ. |
correlation |
of fited model. |
form |
|
response |
computed response. |
predictor |
computed (right side of formula) at estimated parameter with gradient and hessian attributes. |
curvature |
list of curvatures, see |
history |
matrix of convergence history, collumns include: convergence index, parameters, minimized objective function, convergence criterion values, or other values. These values will be used in |
method |
|
data |
list of called data. |
sourcefnc |
Object of class |
Fault |
|
vm |
covariance matrix, diagonal of variance model predicted values. |
rm |
cholesky decomposition of vm. |
gresponse |
transformed of response by rm, include gradinet and hessian attributes. |
gpredictor |
transformed of predictor by rm, include gradinet and hessian attributes. |
hetro |
|
Heteroscedastic variance can have several cases, this function assume variance is parameteric function of predictor (H(t;τ)). If data does not include the predictor variable of varmodel
(t), the predicted of function model f(x;\hat θ) will replace for (t), otherwise user have to defin (t) or (x) as predictor variable of (H).
Hossein Riazoshams, May 2014. Email: riazihosein@gmail.com URL http://www.riazoshams.com/nlr/
Riazoshams, H,. 2010. Outlier detection and robust estimation methods for nonlinear regression having autocorrelated and heteroscedastic errors. PhD thesis disertation, University Putra Malaysia.
Riazoshams H, Midi H, and Ghilagaber G, 2018,. Robust Nonlinear Regression, with Application using R, Joh Wiley and Sons.
fittmethod
, nl.form
, nl.fitt
, nl.fitt.gn
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.