Description Usage Arguments Details Value Note Author(s) References See Also Examples
View source: R/nl_robhetroWM.R
Weighted M-estimate is robustified form of MLE, for nonlinear regression with heteroscedastic error, when variance is parameteric fucntion form. Both nonliner regression model parameter and variance function parameters compute simultanously by minizing the robustified objective function form.
1 2 3 | nl.robhetroWM(formula, data, start = getInitial(formula, data),
control = nlr.control(tolerance = 1e-04, minlanda = 1/2^10,
maxiter = 50 * length(start), derivfree = T), robfunc, varmodel, tau = varmodel$par, ...)
|
formula |
|
data |
list of data include responce and predictor. |
start |
list of parameter values of nonlinear model function (θ. in f(x,θ)). |
control |
list of |
robfunc |
nl.form object of robust function used for downgrading. |
varmodel |
|
tau |
list of initial values for variance model function |
... |
extra arguments to nonlinear regression model, heteroscedastic variance function, robust loss function or its tuning constants. |
For minimizing the objective function simultaneously for theta and tau, derivative free method Nelder-Mead is used.
return object nl.fitt.rgn
for nonlienar regression with heterogeneous error.
parameters |
nonlinear regression parameter estimate of θ. |
correlation |
of fited model. |
form |
|
response |
computed response. |
predictor |
computed (right side of formula) at estimated parameter with gradient and hessian attributes. |
history |
matrix of convergence history, collumns include: convergence index, parameters, minimized objective function, convergence criterion values, or other values. These values will be used in |
method |
|
data |
list of called data. |
sourcefnc |
Object of class |
Fault |
|
htheta |
robust loss likelihood value including gradient and hessain attributes. |
rho |
computed robust rho function, including gradient and hessain attributes. |
ri |
estimated residuals, including gradient and hessain attributes. |
robform |
|
vm |
covariance matrix, diagonal of variance model predicted values. |
rm |
cholesky decomposition of vm. |
hetro |
|
others |
$refvar reference variance. variance of zi's. |
Heteroscedastic variance can have several cases, this function assume variance is parameteric function of predictor (H(t;τ)). If data does not include the predictor variable of varmodel
(t), the predicted of function model f(x;\hat θ) will replace for (t), otherwise user have to defin (t) or (x) as predictor variable of (H).
Lim, C., Sen, P. K., Peddada, S. D.
Lim, C., Sen, P. K., Peddada, S. D. (2010). Statistical inference in nonlinear regression under heteroscedasticity. Sankhya B 72:202-218.
fittmethod
, nl.form
, nl.fitt.rob
, nl.fitt.rgn
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ntpstart=list(p1=.12,p2=6,p3=1,p4=33)
ntpstarttau=list(tau1=-.66,tau2=2,tau3=.04)
datalist=list(xr=ntp$dm.k,yr=ntp$cm.k)
datalist[[nlrobjvarmdls3[[2]]$independent]]<-ntp$dm.k
# ntp data fitt
# tolerance is set as 1e-3 for testing purposes
# is not accurate enough, user can increase it.
bb1 <- nl.robhetroWM(formula=nlrobj1[[15]],data=datalist,
start=ntpstart,robfunc=nl.robfuncs[["least square"]],
tau=ntpstarttau,varmodel=nlrobjvarmdls3[[2]],control=nlr.control(tolerance=1e-3,maxiter=1500))
bb1$parameters
#---------------- hampel -----------------
aa1 <- nl.robhetroWM(formula=nlrobj1[[15]],data=datalist,start=ntpstart,
robfunc=nl.robfuncs[["hampel"]],derivfree=T,
tau=ntpstarttau,varmodel=nlrobjvarmdls3[[2]],
control=nlr.control(tolerance=1e-3,maxiter=1500))#,delta=c(0.2,1,1,160,.2,1,.03))
aa1$parameters
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.