Nothing
#'
#' The equation is, for a response (y) and a predictor (x): \cr
#' \eqn{y ~ (x <= xs) * (a + b * x + c * x^2) + (x > xs) * (a + (-b^2)/(4 * c))} \cr
#'
#' where the break-point (xs) is -0.5*b/c \cr
#' and the asymptote is (a + (-b^2)/(4 * c))
#'
#' In this model the parameter \sQuote{xs} is not directly estimated. If this is required,
#' the model \sQuote{SSquadp3xs} should be used instead.
#'
#' @title self start for quadratic-plateau function
#' @name SSquadp3
#' @rdname SSquadp3
#' @description Self starter for quadratic plateau function with (three) parameters a (intercept), b (slope), c (quadratic)
#' @param x input vector
#' @param a the intercept
#' @param b the slope
#' @param c quadratic term
#' @return a numeric vector of the same length as x containing parameter estimates for equation specified
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' set.seed(123)
#' x <- 1:30
#' y <- quadp3(x, 5, 1.7, -0.04) + rnorm(30, 0, 0.6)
#' dat <- data.frame(x = x, y = y)
#' fit <- nls(y ~ SSquadp3(x, a, b, c), data = dat)
#' ## plot
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' }
NULL
quadp3Init <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 3){
stop("Too few distinct input values to fit a quadratic-platueau-3.")
}
## Guess for a, b and c is to fit a quadratic linear regression to all the data
fit <- lm(xy[,"y"] ~ xy[,"x"] + I(xy[,"x"]^2))
a <- coef(fit)[1]
b <- coef(fit)[2]
c <- coef(fit)[3]
## If I fix a and b maybe I can try to optimze xs only
value <- c(a, b, c)
names(value) <- mCall[c("a","b","c")]
value
}
#' @rdname SSquadp3
#' @return quadp: vector of the same length as x using the quadratic-plateau function
#' @export
quadp3 <- function(x, a, b, c){
.xs <- -0.5 * b/c
.value <- (x <= .xs) * (a + b * x + c * x^2) + (x > .xs) * (a + (-b^2)/(4 * c))
## Derivative with respect to a
.exp1 <- 1
## Derivative with respect to b
## .exp2 <- deriv(~ a + b * x + c * x^2, "b")
.exp2 <- ifelse(x < .xs, x, .xs)
## Derivative with respect to c
## .exp3 <- deriv(~ a + b * x + c * x^2, "c")
.exp3 <- ifelse(x < .xs, x^2, .xs^2)
.actualArgs <- as.list(match.call()[c("a","b","c")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 3L), list(NULL, c("a","b","c")))
.grad[, "a"] <- .exp1
.grad[, "b"] <- .exp2
.grad[, "c"] <- .exp3
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSquadp3
#' @export
SSquadp3 <- selfStart(quadp3, initial = quadp3Init, c("a","b","c"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.