Nothing
#'
#' The equation is, for a response (y) and a predictor (x): \cr
#' \eqn{y ~ (x <= xs) * (a + b * x + (-0.5 * b/xs) * x^2) + (x > xs) * (a + (b^2)/(-2 * b/xs))} \cr
#'
#' where the quadratic term is (c) is -0.5*b/xs \cr
#' and the asymptote is (a + (b^2)/(4 * c)).
#'
#' This model does not estimate the quadratic parameter \sQuote{c} directly.
#' If this is required, the model \sQuote{SSquadp3} should be used instead.
#'
#' @title self start for quadratic-plateau function (xs)
#' @name SSquadp3xs
#' @rdname SSquadp3xs
#' @description Self starter for quadratic plateau function with (three) parameters a (intercept), b (slope), xs (break-point)
#' @param x input vector
#' @param a the intercept
#' @param b the slope
#' @param xs break-point
#' @return a numeric vector of the same length as x containing parameter estimates for equation specified
#' @export
#' @examples
#' \donttest{
#' require(ggplot2)
#' set.seed(123)
#' x <- 1:30
#' y <- quadp3xs(x, 5, 1.7, 20) + rnorm(30, 0, 0.6)
#' dat <- data.frame(x = x, y = y)
#' fit <- nls(y ~ SSquadp3xs(x, a, b, xs), data = dat)
#' ## plot
#' ggplot(data = dat, aes(x = x, y = y)) +
#' geom_point() +
#' geom_line(aes(y = fitted(fit)))
#' }
NULL
quadp3xsInit <- function(mCall, LHS, data, ...){
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 3){
stop("Too few distinct input values to fit a quadratic-platueau-3-xs.")
}
## Guess for a, b and xs is to fit a quadratic linear regression to all the data
fit <- lm(xy[,"y"] ~ xy[,"x"] + I(xy[,"x"]^2))
a <- coef(fit)[1]
b <- coef(fit)[2]
c <- coef(fit)[3]
xs <- -0.5 * b/c
## If I fix a and b maybe I can try to optimze xs only
value <- c(a, b, xs)
names(value) <- mCall[c("a","b","xs")]
value
}
#' @rdname SSquadp3xs
#' @return quadp3xs: vector of the same length as x using the quadratic-plateau function
#' @export
quadp3xs <- function(x, a, b, xs){
.value <- (x <= xs) * (a + b * x + (-0.5 * b/xs) * x^2) + (x > xs) * (a + (-b^2)/(4 * -0.5 * b/xs))
## Derivative with respect to a
.exp1 <- 1
## Derivative with respect to b
## .exp2 <- deriv(~ a + b * x + (-0.5 * b/xs) * x^2, "b")
## .exp2b <- deriv(~ a + (-b^2)/(4 * -0.5 * b/xs), "b")
.expr2 <- -b^2
.expr4 <- 4 * -0.5
.expr6 <- .expr4 * b/xs
.exp2 <- ifelse(x <= xs, x - 0.5/xs * x^2, -(2 * b/.expr6 + .expr2 * (.expr4/xs)/.expr6^2))
## Derivative with respect to xs
## .exp2 <- deriv(~ (a + b * x + (-0.5 * b/xs) * x^2), "xs")
## .exp2b <- deriv(~ a + (-b^2)/(4 * -0.5 * b/xs), "xs")
.expr4 <- -0.5 * b
.expr6 <- x^2
.expr2 <- -b^2
.expr5 <- 4 * -0.5 * b
.expr7 <- .expr5/xs
.exp3 <- ifelse(x <= xs, -(.expr4/xs^2 * .expr6), .expr2 * (.expr5/xs^2)/.expr7^2)
.actualArgs <- as.list(match.call()[c("a","b","xs")])
## Gradient
if (all(unlist(lapply(.actualArgs, is.name)))) {
.grad <- array(0, c(length(.value), 3L), list(NULL, c("a","b","xs")))
.grad[, "a"] <- .exp1
.grad[, "b"] <- .exp2
.grad[, "xs"] <- .exp3
dimnames(.grad) <- list(NULL, .actualArgs)
attr(.value, "gradient") <- .grad
}
.value
}
#' @rdname SSquadp3xs
#' @export
SSquadp3xs <- selfStart(quadp3xs, initial = quadp3xsInit, c("a","b","xs"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.