Nothing
#' 'Assessing Normality of a Stationary Process.'
#'
#' @docType package
#' @name nortsTest-package
#' @aliases nortsTest
#'
#' @description
#' Despite that several tests for normality in stationary processes have been proposed
#' in the literature, consistent implementations of these tests in programming languages
#' are limited.Seven normality test are implemented. The asymptotic Lobato and Velasco's,
#' asymptotic Epps, Psaradakis and Vávra, Lobato and Velasco's sieve bootstrap approximation,
#' El bouch et al., Epps sieve bootstrap approximation and the random projections tests
#' for univariate stationary process. Some other diagnostics such as, unit root test for
#' stationarity, seasonal tests for seasonality, and arch effect test for volatility; are
#' also performed. Additionally, the El bouch test performs normality tests for bivariate
#' time series. The package also offers residual diagnostic for linear time series models
#' developed in several packages.
#'
#' @details
#' We present several functions for testing the hypothesis of normality in
#' univariate stationary processes, the \code{epps.test}, \code{lobato.test},
#' \code{rp.test}, \code{lobato-bootstrap.test}, \code{epps-bootstrap.test},
#' \code{elbouch.test}, and \code{varvra.test}. Additionally, the \code{elbouch.test}
#' function performs a bivariate normality test when the user provides a second
#' time series. For model diagnostics, we provide functions for unit root, seasonality
#' and ARCH effects tests for stationary, and other methods for visual checks using the
#' \pkg{ggplot2} and \pkg{forecast} packages.
#'
#' @import methods ggplot2 gridExtra forecast nortest stats tseries uroot MASS
#'
#' @references
#' Epps, T.W. (1987). Testing that a stationary time series is Gaussian. \emph{The
#' Annals of Statistic}. 15(4), 1683-1698.\url{https://projecteuclid.org/euclid.aos/1176350618}.
#'
#' Lobato, I., & Velasco, C. (2004). A simple test of normality in time series.
#' \emph{Journal of econometric theory}. 20(4), 671-689.
#' \code{doi:https://doi.org/10.1017/S0266466604204030}.
#'
#' Psaradakis, Z. & Vávra, M. (2017). A distance test of normality for a wide class
#' of stationary process. \emph{Journal of Econometrics and Statistics}. 2, 50-60.
#' \code{doi:https://doi.org/10.1016/j.ecosta.2016.11.005}
#'
#' Nieto-Reyes, A., Cuesta-Albertos, J. & Gamboa, F. (2014). A random-projection
#' based test of Gaussianity for stationary processes. \emph{Computational
#' Statistics & Data Analysis, Elsevier}, vol. 75(C), pages 124-141.
#'
#' Hyndman, R. & Khandakar, Y. (2008). Automatic time series forecasting: the
#' forecast package for \code{R}. \emph{Journal of Statistical Software}. 26(3),
#' 1-22.\code{doi: 10.18637/jss.v027.i03}.
#'
#' Wickham, H. (2008). ggplot2: Elegant Graphics for Data Analysis.
#' \emph{Springer-Verlag New York}.
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.