Nothing
params <-
list(EVAL = FALSE)
## ----eval = FALSE-----------------------------------------------------------------------
#
# # From CRAN would be
# install.packages("ohun")
#
# #load package
# library(ohun)
#
## ----eval = FALSE-----------------------------------------------------------------------
#
# # install package
# remotes::install_github("maRce10/ohun")
#
# #load packages
# library(ohun)
# library(tuneR)
# library(warbleR)
## ----global options, echo = FALSE, message=FALSE, warning=FALSE-------------------------
#load packages
library(ohun)
library(tuneR)
library(warbleR)
library(ggplot2)
data("lbh1", "lbh2", "lbh_reference")
# for spectrograms
par(mar = c(5, 4, 2, 2) + 0.1)
stopifnot(require(knitr))
options(width = 90)
opts_chunk$set(
comment = NA,
# eval = if (isTRUE(exists("params"))) params$EVAL else FALSE,
dev = "jpeg",
dpi = 100,
fig.width=10,
out.width = "100%",
fig.align = "center"
)
## ----eval = TRUE------------------------------------------------------------------------
# load example data
data("lbh1", "lbh2", "lbh_reference")
lbh_reference
## ---------------------------------------------------------------------------------------
# convert to data frame
as.data.frame(lbh_reference)
## ----eval = TRUE, fig.asp=0.4-----------------------------------------------------------
# save sound file
tuneR::writeWave(lbh1, file.path(tempdir(), "lbh1.wav"))
# save sound file
tuneR::writeWave(lbh2, file.path(tempdir(), "lbh2.wav"))
# print spectrogram
label_spectro(wave = lbh1, reference = lbh_reference[lbh_reference$sound.files == "lbh1.wav", ], hop.size = 10, ovlp = 50, flim = c(1, 10))
# print spectrogram
label_spectro(wave = lbh2, reference = lbh_reference[lbh_reference$sound.files == "lbh2.wav", ], hop.size = 10, ovlp = 50, flim = c(1, 10))
## ---------------------------------------------------------------------------------------
lbh1_reference <-
lbh_reference[lbh_reference$sound.files == "lbh1.wav",]
# diagnose
diagnose_detection(reference = lbh1_reference, detection = lbh1_reference)[, c(1:3, 7:9)]
## ----fig.asp=0.4------------------------------------------------------------------------
# create new table
lbh1_detection <- lbh1_reference[3:9,]
# print spectrogram
label_spectro(
wave = lbh1,
reference = lbh1_reference,
detection = lbh1_detection,
hop.size = 10,
ovlp = 50,
flim = c(1, 10)
)
# diagnose
diagnose_detection(reference = lbh1_reference, detection = lbh1_detection)[, c(1:3, 7:9)]
## ----fig.asp=0.4------------------------------------------------------------------------
# print spectrogram
label_spectro(
wave = lbh1,
detection = lbh1_reference,
reference = lbh1_detection,
hop.size = 10,
ovlp = 50,
flim = c(1, 10)
)
# diagnose
diagnose_detection(reference = lbh1_detection, detection = lbh1_reference)[, c(1:3, 7:9)]
## ----fig.asp=0.4------------------------------------------------------------------------
# create new table
lbh1_detection <- lbh1_reference
# add 'noise' to start
set.seed(18)
lbh1_detection$start <-
lbh1_detection$start + rnorm(nrow(lbh1_detection), mean = 0, sd = 0.1)
## print spectrogram
label_spectro(
wave = lbh1,
reference = lbh1_reference,
detection = lbh1_detection,
hop.size = 10,
ovlp = 50,
flim = c(1, 10)
)
# diagnose
diagnose_detection(reference = lbh1_reference, detection = lbh1_detection)
## ---------------------------------------------------------------------------------------
# diagnose with time diagnostics
diagnose_detection(reference = lbh1_reference[-1, ], detection = lbh1_detection[-10, ], time.diagnostics = TRUE)
## ---------------------------------------------------------------------------------------
# diagnose by sound file
diagnostic <-
diagnose_detection(reference = lbh1_reference,
detection = lbh1_detection,
by.sound.file = TRUE)
diagnostic
## ---------------------------------------------------------------------------------------
# summarize
summarize_diagnostic(diagnostic)
## ---------------------------------------------------------------------------------------
# ggplot detection and reference
plot_detection(reference = lbh1_reference, detection = lbh1_detection)
## ---------------------------------------------------------------------------------------
# ggplot detection and reference
plot_detection(reference = lbh_reference, detection = lbh_reference)
## ----eval = FALSE, echo=FALSE-----------------------------------------------------------
# Observaciones:
#
# avoid having overlapping selections in reference (check with overlapping_sels())
#
# downsample to a freq range just enough for the sound events of interest
#
# use hop.size instead of wl
#
# after split_acoustic_data() another function that returns the position in the original unsplit sound file
#
# count number of detections per unit of time
## ----session info, echo=FALSE-----------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.