R/optimizer.R

#' Specify numerical optimizer object
#'
#' @description
#' The \code{Optimizer} object defines a numerical optimizer based on any
#' optimization algorithm implemented in R. The main advantage of working with
#' an \code{Optimizer} object instead of using the optimization function
#' directly lies in the standardized inputs and outputs.
#'
#' Any R function that fulfills the following four constraints can be defined as
#' an \code{Optimizer} object:
#'
#' 1. It must have an input for a \code{function}, the objective function to be
#'    optimized.
#' 2. It must have an input for a \code{numeric} vector, the initial values from
#'    where the optimizer starts.
#' 3. It must have a \code{...} argument for additional parameters passed on to
#'    the objective function.
#' 4. The output must be a named \code{list}, including the optimal function
#'    value and the optimal parameter vector.
#'
#' @param objective \[`function` | `Objective`\]\cr
#' A \code{function} to be optimized that
#'
#' 1. has at least one argument that receives a \code{numeric} \code{vector}
#' 2. and returns a single \code{numeric} value.
#'
#' Alternatively, it can also be an \code{\link{Objective}} object for more
#' flexibility.
#'
#' @param initial \[`numeric()`\]\cr
#' Starting parameter values for the optimization.
#'
#' @param lower \[`NA` | `numeric()` | `numeric(1)`\]\cr
#' Lower bounds on the parameters.
#'
#' If a single number, this will be applied to all parameters.
#'
#' Can be `NA` to not define any bounds.
#'
#' @param upper \[`NA` | `numeric()` | `numeric(1)`\]\cr
#' Upper bounds on the parameters.
#'
#' If a single number, this will be applied to all parameters.
#'
#' Can be `NA` to not define any bounds.
#'
#' @param ... \[`any`\]\cr
#' Optionally additional named arguments to be passed to the optimizer
#' algorithm. Without specifications, default values of the optimizer are used.
#'
#' @param direction \[`character(1)`\]\cr
#' Either `"min"` for minimization or `"max"` for maximization.
#'
#' @param .verbose \[`logical(1)`\]\cr
#' Print status messages?
#'
#' @examples
#' ### Task: compare minimization with 'stats::nlm' and 'pracma::nelder_mead'
#'
#' # 1. define objective function and initial values
#' objective <- TestFunctions::TF_ackley
#' initial <- c(3, 3)
#'
#' # 2. get overview of optimizers available in dictionary
#' optimizer_dictionary$keys
#'
#' # 3. define 'nlm' optimizer
#' nlm <- Optimizer$new(which = "stats::nlm")
#'
#' # 4. define the 'pracma::nelder_mead' optimizer (not contained in the dictionary)
#' nelder_mead <- Optimizer$new(which = "custom")
#' nelder_mead$definition(
#'   algorithm = pracma::nelder_mead, # the optimization function
#'   arg_objective = "fn",            # the argument name for the objective function
#'   arg_initial = "x0",              # the argument name for the initial values
#'   out_value = "fmin",              # the element for the optimal function value in the output
#'   out_parameter = "xmin",          # the element for the optimal parameters in the output
#'   direction = "min"                # the optimizer minimizes
#' )
#'
#' # 5. compare the minimization results
#' nlm$minimize(objective, initial)
#' nelder_mead$minimize(objective, initial)
#'
#' @export

Optimizer <- R6::R6Class(

  classname = "Optimizer",

  public = list(

    #' @description
    #' Initializes a new \code{Optimizer} object.
    #'
    #' @param which \[`character(1)`\]\cr
    #' Either:
    #'
    #' - one of \code{optimizer_dictionary$keys}
    #' - or \code{"custom"}, in which case \code{$definition()} must be used to
    #' define the optimizer details.
    #'
    #' @return
    #' A new \code{Optimizer} object.

    initialize = function(which, ..., .verbose = TRUE) {

      ### input checks
      oeli::input_check_response(
        check = oeli::check_missing(which),
        var_name = "which"
      )
      oeli::input_check_response(
        check = checkmate::check_string(which),
        var_name = "which"
      )
      oeli::input_check_response(
        check = checkmate::check_flag(.verbose),
        var_name = ".verbose"
      )

      ### initialize optimizer
      if (identical(which, "custom")) {
        if (.verbose) {
          cli::cli_inform(
            "Use method {.fun $definition} next to define a custom optimizer."
          )
        }
      } else {
        oeli::input_check_response(
          check = checkmate::check_choice(
            which, choices = optimizer_dictionary$keys
          ),
          var_name = "which"
        )
        self$definition(
          algorithm = optimizer_dictionary$get(
            key = which, value = "algorithm"
          ),
          arg_objective = optimizer_dictionary$get(
            key = which, value = "arg_objective"
          ),
          arg_initial = optimizer_dictionary$get(
            key = which, value = "arg_initial"
          ),
          arg_lower = optimizer_dictionary$get(
            key = which, value = "arg_lower"
          ),
          arg_upper = optimizer_dictionary$get(
            key = which, value = "arg_upper"
          ),
          arg_gradient = optimizer_dictionary$get(
            key = which, value = "arg_gradient"
          ),
          arg_hessian = optimizer_dictionary$get(
            key = which, value = "arg_hessian"
          ),
          gradient_as_attribute = optimizer_dictionary$get(
            key = which, value = "gradient_as_attribute"
          ),
          hessian_as_attribute = optimizer_dictionary$get(
            key = which, value = "hessian_as_attribute"
          ),
          out_value = optimizer_dictionary$get(
            key = which, value = "out_value"
          ),
          out_parameter = optimizer_dictionary$get(
            key = which, value = "out_parameter"
          ),
          direction = optimizer_dictionary$get(
            key = which, value = "direction"
          )
        )
        self$label <- which
        self$set_arguments(...)
      }
    },

    #' @description
    #' Defines an optimizer.
    #'
    #' @param algorithm \[`function`\]\cr
    #' The optimization algorithm.
    #'
    #' @param arg_objective \[`character(1)`\]\cr
    #' The argument name for the objective function in \code{algorithm}.
    #'
    #' @param arg_initial \[`character(1)`\]\cr
    #' The argument name for the initial values in \code{algorithm}.
    #'
    #' @param arg_lower \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the lower parameter bound in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.
    #'
    #' @param arg_upper \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the upper parameter bound in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.
    #'
    #' @param arg_gradient \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the gradient function in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.
    #'
    #' @param arg_hessian \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the Hessian function in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.
    #'
    #' @param gradient_as_attribute \[`logical(1)`\]\cr
    #' Only relevant if `arg_gradient` is not `NA`.
    #'
    #' In that case, does `algorithm` expect that the gradient is an attribute
    #' of the objective function output (as for example in
    #' \code{\link[stats]{nlm}})? In that case, `arg_gradient` defines the
    #' attribute name.
    #'
    #' @param hessian_as_attribute \[`logical(1)`\]\cr
    #' Only relevant if `arg_hessian` is not `NA`.
    #'
    #' In that case, does `algorithm` expect that the Hessian is an attribute
    #' of the objective function output (as for example in
    #' \code{\link[stats]{nlm}})? In that case, `arg_hessian` defines the
    #' attribute name.
    #'
    #' @param out_value \[`character(1)`\]\cr
    #' The element name for the optimal function value in the output \code{list}
    #' of \code{algorithm}.
    #'
    #' @param out_parameter \[`character(1)`\]\cr
    #' The element name for the optimal parameters in the output \code{list} of
    #' \code{algorithm}.
    #'
    #' @param direction \[`character(1)`\]\cr
    #' Either \code{"min"} (if the optimizer minimizes) or \code{"max"}
    #' (if the optimizer maximizes).

    definition = function(
      algorithm,
      arg_objective,
      arg_initial,
      arg_lower = NA,
      arg_upper = NA,
      arg_gradient = NA,
      arg_hessian = NA,
      gradient_as_attribute = FALSE,
      hessian_as_attribute = FALSE,
      out_value,
      out_parameter,
      direction
    ) {

      oeli::input_check_response(
        check = oeli::check_missing(algorithm),
        var_name = "algorithm"
      )
      self$algorithm <- algorithm
      self$label <- oeli::variable_name(algorithm)

      oeli::input_check_response(
        check = oeli::check_missing(arg_objective),
        var_name = "arg_objective"
      )
      self$arg_objective <- arg_objective

      oeli::input_check_response(
        check = oeli::check_missing(arg_initial),
        var_name = "arg_initial"
      )
      self$arg_initial <- arg_initial

      self$arg_lower <- arg_lower
      self$arg_upper <- arg_upper
      self$arg_gradient <- arg_gradient
      self$arg_hessian <- arg_hessian
      self$gradient_as_attribute <- gradient_as_attribute
      self$hessian_as_attribute <- hessian_as_attribute

      oeli::input_check_response(
        check = oeli::check_missing(out_value),
        var_name = "out_value"
      )
      self$out_value <- out_value

      oeli::input_check_response(
        check = oeli::check_missing(out_parameter),
        var_name = "out_parameter"
      )
      self$out_parameter <- out_parameter

      oeli::input_check_response(
        check = oeli::check_missing(direction),
        var_name = "direction"
      )
      self$direction <- direction

      oeli::input_check_response(
        check = checkmate::check_function(
          algorithm,
          args = c(
            arg_objective, self$arg_initial,
            if (!is.na(arg_lower)) arg_lower, if (!is.na(arg_upper)) arg_upper,
            if (!is.na(arg_gradient) && isFALSE(gradient_as_attribute)) arg_gradient,
            if (!is.na(arg_hessian) && isFALSE(hessian_as_attribute)) arg_hessian,
            "..."
          )
        ),
        var_name = "algorithm"
      )

      invisible(self)
    },

    #' @description
    #' Sets optimizer arguments.
    #'
    #' @return
    #' The \code{Optimizer} object.

    set_arguments = function(...) {
      arguments <- list(...)
      private$.arguments[names(arguments)] <- arguments
    },

    #' @description
    #' Performing minimization.
    #'
    #' @return
    #' A named \code{list}, containing at least these five elements:
    #' \describe{
    #'   \item{\code{value}}{A \code{numeric}, the minimum function value.}
    #'   \item{\code{parameter}}{A \code{numeric} vector, the parameter vector
    #'   where the minimum is obtained.}
    #'   \item{\code{seconds}}{A \code{numeric}, the optimization time in seconds.}
    #'   \item{\code{initial}}{A \code{numeric}, the initial parameter values.}
    #'   \item{\code{error}}{Either \code{TRUE} if an error occurred, or \code{FALSE}, else.}
    #' }
    #' Appended are additional output elements of the optimizer.
    #'
    #' If an error occurred, then the error message is also appended as element
    #' \code{error_message}.
    #'
    #' If the time limit was exceeded, this counts as an error. In addition,
    #' the flag \code{time_out = TRUE} is appended.
    #'
    #' @examples
    #' Optimizer$new("stats::nlm")$
    #'   minimize(objective = function(x) x^4 + 3*x - 5, initial = 2)

    minimize = function(
      objective,
      initial,
      lower = NA,
      upper = NA,
      ...
    ) {
      oeli::input_check_response(
        check = oeli::check_missing(objective),
        var_name = "objective"
      )
      oeli::input_check_response(
        check = oeli::check_missing(initial),
        var_name = "initial"
      )
      private$.optimize(
        objective = objective,
        initial = initial,
        lower = lower,
        upper = upper,
        additional_arguments = list(...),
        direction = "min"
      )
    },

    #' @description
    #' Performing maximization.
    #'
    #' @return
    #' A named \code{list}, containing at least these five elements:
    #' \describe{
    #'   \item{\code{value}}{A \code{numeric}, the maximum function value.}
    #'   \item{\code{parameter}}{A \code{numeric} vector, the parameter vector
    #'   where the maximum is obtained.}
    #'   \item{\code{seconds}}{A \code{numeric}, the optimization time in seconds.}
    #'   \item{\code{initial}}{A \code{numeric}, the initial parameter values.}
    #'   \item{\code{error}}{Either \code{TRUE} if an error occurred, or \code{FALSE}, else.}
    #' }
    #' Appended are additional output elements of the optimizer.
    #'
    #' If an error occurred, then the error message is also appended as element
    #' \code{error_message}.
    #'
    #' If the time limit was exceeded, this also counts as an error. In addition,
    #' the flag \code{time_out = TRUE} is appended.
    #'
    #' @examples
    #' Optimizer$new("stats::nlm")$
    #'   maximize(objective = function(x) -x^4 + 3*x - 5, initial = 2)

    maximize = function(
      objective,
      initial,
      lower = NA,
      upper = NA,
      ...
    ) {
      oeli::input_check_response(
        check = oeli::check_missing(objective),
        var_name = "objective"
      )
      oeli::input_check_response(
        check = oeli::check_missing(initial),
        var_name = "initial"
      )
      private$.optimize(
        objective = objective,
        initial = initial,
        lower = lower,
        upper = upper,
        additional_arguments = list(...),
        direction = "max"
      )
    },

    #' @description
    #' Performing minimization or maximization.
    #'
    #' @return
    #' A named \code{list}, containing at least these five elements:
    #' \describe{
    #'   \item{\code{value}}{A \code{numeric}, the maximum function value.}
    #'   \item{\code{parameter}}{A \code{numeric} vector, the parameter vector
    #'   where the maximum is obtained.}
    #'   \item{\code{seconds}}{A \code{numeric}, the optimization time in seconds.}
    #'   \item{\code{initial}}{A \code{numeric}, the initial parameter values.}
    #'   \item{\code{error}}{Either \code{TRUE} if an error occurred, or \code{FALSE}, else.}
    #' }
    #' Appended are additional output elements of the optimizer.
    #'
    #' If an error occurred, then the error message is also appended as element
    #' \code{error_message}.
    #'
    #' If the time limit was exceeded, this also counts as an error. In addition,
    #' the flag \code{time_out = TRUE} is appended.
    #'
    #' @examples
    #' objective <- function(x) -x^4 + 3*x - 5
    #' optimizer <- Optimizer$new("stats::nlm")
    #' optimizer$optimize(objective = objective, initial = 2, direction = "min")
    #' optimizer$optimize(objective = objective, initial = 2, direction = "max")

    optimize = function(
      objective,
      initial,
      lower = NA,
      upper = NA,
      direction = "min",
      ...
    ) {
      oeli::input_check_response(
        check = oeli::check_missing(objective),
        var_name = "objective"
      )
      oeli::input_check_response(
        check = oeli::check_missing(initial),
        var_name = "initial"
      )
      private$.optimize(
        objective = objective,
        initial = initial,
        lower = lower,
        upper = upper,
        additional_arguments = list(...),
        direction = direction
      )
    },

    #' @description
    #' Prints the optimizer label.
    #' @return
    #' Invisibly the \code{Optimizer} object.

    print = function(...) {
      cat("<optimizer '", self$label, "'>", sep = "")
      invisible(self)
    }

  ),

  active = list(

    #' @field label \[`character(1)`\]\cr
    #' The label for the optimizer.

    label = function(value) {
      if (missing(value)) {
        private$.label
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value)
        )
        private$.label <- value
      }
    },

    #' @field algorithm \[`function`\]\cr
    #' The optimization algorithm.

    algorithm = function(value) {
      if (missing(value)) {
        private$.algorithm
      } else {
        oeli::input_check_response(
          check = checkmate::check_function(value)
        )
        private$.algorithm <- value
      }
    },

    #' @field arg_objective \[`character(1)`\]\cr
    #' The argument name for the objective function in \code{algorithm}.

    arg_objective = function(value) {
      if (missing(value)) {
        private$.arg_objective
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value)
        )
        private$.arg_objective <- value
      }
    },

    #' @field arg_initial \[`character(1)`\]\cr
    #' The argument name for the initial values in \code{algorithm}.

    arg_initial = function(value) {
      if (missing(value)) {
        private$.arg_initial
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value)
        )
        private$.arg_initial <- value
      }
    },

    #' @field arg_lower \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the lower parameter bound in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.

    arg_lower = function(value) {
      if (missing(value)) {
        private$.arg_lower
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value, na.ok = TRUE)
        )
        private$.arg_lower <- value
      }
    },

    #' @field arg_upper \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the upper parameter bound in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.

    arg_upper = function(value) {
      if (missing(value)) {
        private$.arg_upper
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value, na.ok = TRUE)
        )
        private$.arg_upper <- value
      }
    },

    #' @field arg_gradient \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the gradient function in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.

    arg_gradient = function(value) {
      if (missing(value)) {
        private$.arg_gradient
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value, na.ok = TRUE)
        )
        private$.arg_gradient <- value
      }
    },

    #' @field arg_hessian \[`character(1)` | `NA`\]\cr
    #' Optionally the argument name for the Hessian function in
    #' \code{algorithm}.
    #'
    #' Can be `NA` if not available.

    arg_hessian = function(value) {
      if (missing(value)) {
        private$.arg_hessian
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value, na.ok = TRUE)
        )
        private$.arg_hessian <- value
      }
    },

    #' @field gradient_as_attribute \[`logical(1)`\]\cr
    #' Only relevant if `arg_gradient` is not `NA`.
    #'
    #' In that case, does `algorithm` expect that the gradient is an attribute
    #' of the objective function output (as for example in
    #' \code{\link[stats]{nlm}})? In that case, `arg_gradient` defines the
    #' attribute name.

    gradient_as_attribute = function(value) {
      if (missing(value)) {
        private$.gradient_as_attribute
      } else {
        oeli::input_check_response(
          check = checkmate::check_flag(value)
        )
        private$.gradient_as_attribute <- value
      }
    },

    #' @field hessian_as_attribute \[`logical(1)`\]\cr
    #' Only relevant if `arg_hessian` is not `NA`.
    #'
    #' In that case, does `algorithm` expect that the Hessian is an attribute
    #' of the objective function output (as for example in
    #' \code{\link[stats]{nlm}})? In that case, `arg_hessian` defines the
    #' attribute name.

    hessian_as_attribute = function(value) {
      if (missing(value)) {
        private$.hessian_as_attribute
      } else {
        oeli::input_check_response(
          check = checkmate::check_flag(value)
        )
        private$.hessian_as_attribute <- value
      }
    },

    #' @field out_value \[`character(1)`\]\cr
    #' The element name for the optimal function value in the output \code{list}
    #' of \code{algorithm}.

    out_value = function(value) {
      if (missing(value)) {
        private$.out_value
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value)
        )
        private$.out_value <- value
      }
    },

    #' @field out_parameter \[`character(1)`\]\cr
    #' The element name for the optimal parameters in the output \code{list} of
    #' \code{algorithm}.

    out_parameter = function(value) {
      if (missing(value)) {
        private$.out_parameter
      } else {
        oeli::input_check_response(
          check = checkmate::check_string(value)
        )
        private$.out_parameter <- value
      }
    },

    #' @field direction \[`character(1)`\]\cr
    #' Either \code{"min"} (if the optimizer minimizes) or \code{"max"}
    #' (if the optimizer maximizes).

    direction = function(value) {
      if (missing(value)) {
        private$.direction
      } else {
        oeli::input_check_response(
          check = checkmate::check_choice(value, c("min", "max"))
        )
        private$.direction <- value
      }
    },

    #' @field arguments \[`list()`\]\cr
    #' Custom arguments for \code{algorithm}.
    #'
    #' Defaults are used for arguments that are not specified.

    arguments = function(value) {
      if (missing(value)) {
        private$.arguments
      } else {
        oeli::input_check_response(
          check = checkmate::check_list(value, names = "unique")
        )
        private$.arguments <- value
      }
    },

    #' @field seconds \[`numeric(1)`\]\cr
    #' A time limit in seconds.
    #'
    #' Optimization is interrupted prematurely if \code{seconds} is exceeded.
    #'
    #' No time limit if \code{seconds = Inf} (the default).
    #'
    #' Note the limitations documented in \code{\link[base]{setTimeLimit}}.

    seconds = function(value) {
      if (missing(value)) {
        private$.seconds
      } else {
        oeli::input_check_response(
          check = checkmate::check_number(value, lower = 0, finite = FALSE)
        )
        private$.seconds <- value
      }
    },

    #' @field hide_warnings \[`logical(1)`\]\cr
    #' Hide warnings during optimization?

    hide_warnings = function(value) {
      if (missing(value)) {
        private$.hide_warnings
      } else {
        oeli::input_check_response(
          check = checkmate::check_flag(value)
        )
        private$.hide_warnings <- value
      }
    },

    #' @field output_ignore \[`character()`\]\cr
    #' Elements to ignore (not include) in the optimization output.

    output_ignore = function(value) {
      if (missing(value)) {
        private$.output_ignore
      } else {
        oeli::input_check_response(
          check = checkmate::check_names(value)
        )
        private$.output_ignore <- value
      }
    }
  ),

  private = list(

    .label = "unlabeled",
    .algorithm = NULL,
    .arg_objective = NULL,
    .arg_initial = NULL,
    .arg_lower = NULL,
    .arg_upper = NULL,
    .arg_gradient = NULL,
    .arg_hessian = NULL,
    .gradient_as_attribute = NULL,
    .hessian_as_attribute = NULL,
    .out_value = NULL,
    .out_parameter = NULL,
    .direction = NULL,
    .arguments = list(),
    .seconds = Inf,
    .hide_warnings = FALSE,
    .output_ignore = character(),

    ### helper function that prepares the optimization results
    .prepare_result = function(result, initial, invert_objective) {
      oeli::input_check_response(
        check = checkmate::check_list(result$result),
        prefix = "The optimizer output is bad:"
      )
      out <- list()
      if (private$.out_value %in% names(result$result)) {
        if (invert_objective) {
          out[["value"]] <- -result$result[[private$.out_value]]
        } else {
          out[["value"]] <- result$result[[private$.out_value]]
        }
      } else {
        out[["value"]] <- NA_real_
      }
      if (private$.out_parameter %in% names(result$result)) {
        out[["parameter"]] <- result$result[[private$.out_parameter]]
      } else {
        out[["parameter"]] <- rep(NA_real_, length(initial))
      }
      if ("time" %in% names(result)) {
        out[["seconds"]] <- as.numeric(result$time)
      } else {
        out[["seconds"]] <- NA_real_
      }
      out[["initial"]] <- initial
      if (!"error" %in% names(result)) {
        out[["error"]] <- FALSE
      } else {
        out[["error"]] <- TRUE
      }
      not_add <- c(private$.output_ignore, private$.out_value, private$.out_parameter)
      oeli::merge_lists(
        out,
        result$result[!names(result$result) %in% not_add]
      )
    },

    ### helper function that build an 'Objective' object from a function
    .build_objective_object = function(objective, initial) {
      if (!checkmate::test_r6(objective, "Objective")) {
        oeli::input_check_response(
          check = oeli::check_numeric_vector(initial),
          var_name = "initial"
        )
        objective <- Objective$new(
          f = objective,
          target = names(formals(objective))[1],
          npar = length(initial)
        )
      }
      return(objective)
    },

    ### helper function that performs optimization
    .optimize = function(
    objective,
    initial,
    lower,
    upper,
    additional_arguments,
    direction
    ) {

      ### input checks
      oeli::input_check_response(
        check = checkmate::check_choice(direction, c("min", "max")),
        var_name = "direction"
      )
      checkmate::assert_list(additional_arguments) # to make sure

      ### build objective function
      objective_object <- private$.build_objective_object(objective, initial)

      ### check parameter bounds
      parameter_bounds_arguments <- list()
      if (!checkmate::test_scalar_na(lower)) {
        if (!is.na(self$arg_lower)) {
          if (checkmate::test_number(lower)) {
            lower <- rep(lower, length(initial))
          }
          oeli::input_check_response(
            check = oeli::check_numeric_vector(
              lower, len = length(initial), any.missing = FALSE
            ),
            var_name = "lower"
          )
          parameter_bounds_arguments <- c(
            parameter_bounds_arguments,
            structure(
              list(lower), names = self$arg_lower
            )
          )
        } else {
          if (!self$hide_warnings) {
            cli::cli_warn(
              "The optimizer does not support lower parameter bounds."
            )
          }
          lower <- NA
        }
      }
      if (!checkmate::test_scalar_na(upper)) {
        if (!is.na(self$arg_upper)) {
          if (checkmate::test_number(upper)) {
            upper <- rep(upper, length(initial))
          }
          oeli::input_check_response(
            check = oeli::check_numeric_vector(
              upper, len = length(initial), any.missing = FALSE
            ),
            "upper"
          )
          parameter_bounds_arguments <- c(
            parameter_bounds_arguments,
            structure(
              list(upper), names = self$arg_upper
            )
          )
        } else {
          if (!self$hide_warnings) {
            cli::cli_warn(
              "The optimizer does not support upper parameter bounds."
            )
          }
          upper <- NA
        }
      }

      ### build gradient and hessian arguments
      gradient_hessian_arguments <- list()
      if (objective_object$gradient_specified && !self$gradient_as_attribute) {
        if (!is.na(self$arg_gradient)) {
          gradient_hessian_arguments <- c(
            gradient_hessian_arguments,
            structure(
              list(objective_object$evaluate_gradient),
              names = self$arg_gradient
            )
          )
        } else {
          if (!self$hide_warnings) {
            cli::cli_warn(
              "The optimizer does not support custom gradient function."
            )
          }
        }
      }
      if (objective_object$hessian_specified && !self$hessian_as_attribute) {
        if (!is.na(self$arg_hessian)) {
          gradient_hessian_arguments <- c(
            gradient_hessian_arguments,
            structure(
              list(objective_object$evaluate_hessian),
              names = self$arg_hessian
            )
          )
        } else {
          if (!self$hide_warnings) {
            cli::cli_warn(
              "The optimizer does not support custom Hessian function."
            )
          }
        }
      }

      ### build optimizer arguments
      invert_objective <- !identical(private$.direction, direction)
      args <- c(
        ### defines objective and initial argument for optimizer
        structure(
          list(objective_object$evaluate, initial),
          names = c(private$.arg_objective, private$.arg_initial)
        ),
        ### ensures that optimizer minimizes
        list(
          ".negate" = invert_objective,
          ".gradient_as_attribute" = self$gradient_as_attribute,
          ".gradient_attribute_name" = self$arg_gradient,
          ".hessian_as_attribute" = self$hessian_as_attribute,
          ".hessian_attribute_name" = self$arg_hessian
        ),

        ### arguments via ... have priority over previously specified arguments
        oeli::merge_lists(
          parameter_bounds_arguments,
          gradient_hessian_arguments,
          additional_arguments,
          private$.arguments
        )
      )
      checkmate::assert_list(args, names = "unique") # to make sure

      ### optimize
      result <- tryCatch(
        {
          suppressWarnings(
            oeli::timed(
              oeli::do.call_timed(
                what = private$.algorithm,
                args = args,
                units = "secs"
              ),
              seconds = private$.seconds,
              on_time_out = "error"
            ),
            classes = if (private$.hide_warnings) "warning" else ""
          )
        },
        error = function(e) {
          error_message <- e$message
          time_out <- grepl("time limit exceeded", error_message)
          if (time_out) {
            list(
              "result" = list(
                "error_message" = error_message,
                "time_out" = TRUE
              ),
              "error" = TRUE,
              "time" = NA_real_
            )
          } else {
            list(
              "result" = list("error_message" = error_message),
              "error" = TRUE,
              "time" = NA_real_
            )
          }
        }
      )

      ### prepare result
      private$.prepare_result(result, initial, invert_objective)
    }

  )

)

Try the optimizeR package in your browser

Any scripts or data that you put into this service are public.

optimizeR documentation built on June 8, 2025, 10:35 a.m.