R/stride.R

Defines functions extract.stride extract

Documented in extract extract.stride

stride <- function (seq, arg2, type = "pam", numrep = 10, maxitr = 100)
{
    ncol <- length(seq)
    pnt <- 0

    if (class(arg2) == "dist") {
        if (type == "pam") {
            res <- matrix(NA, nrow = attr(arg2, "Size"), ncol = ncol)
            for (i in seq) {
                pnt <- pnt + 1
                res[, pnt] <- pam(arg2, i)$clustering
            }
            out <- data.frame(res)
            names(out) <- as.character(seq)
            row.names(out) <- attr(arg2, "Labels")
            out <- list(clustering = out, seq = seq, type='pam', source=deparse(substitute(arg2)))
            class(out) <- "stride"
            out
        } else if (type == 'opt') {
            if (length(numrep) == 1) numrep <- rep(numrep,ncol)
            if (length(numrep) != ncol)
                stop('Number of reps must be a constant or vector of same length as the sequence')
            if (length(maxitr) == 1) maxitr <- rep(maxitr,ncol)
            if (length(maxitr) != ncol)
                stop('Maximum number of iterations must be a constant or vector of same length as the sequence')
            res <- matrix(NA, nrow = attr(arg2, "Size"), ncol = ncol)
            numitr <- rep(NA,ncol)
            for (i in 1:ncol) {
                tmp <- bestopt(arg2, seq[i], numrep = numrep[i], maxitr = maxitr[i])
                res[,i] <- tmp$clustering
                numitr[i] <- tmp$numitr
            }
            out <- data.frame(res)
            names(out) <- as.character(seq)
            row.names(out) <- attr(arg2, "Labels")
            out <- list(clustering = out, seq = seq, numitr = numitr,
                   maxitr=maxitr, numrep=numrep, type='optpart', source=deparse(substitute(arg2)))
            class(out) <- "stride"
            out
        } else if (type == "kmeans") {
            if (length(numrep) == 1) numrep <- rep(numrep,ncol)
            if (length(numrep) != ncol)
                stop('Number of reps must be a constant or vector of same length as the sequence')
            if (length(maxitr) == 1) maxitr <- rep(maxitr,ncol)
            if (length(maxitr) != ncol)
                stop('Maximum number of iterations must be a constant or vector of same length as the sequence')
            res <- matrix(NA, nrow = attr(arg2, "Size"), ncol = ncol)
            numitr <- rep(NA,ncol)
            for (i in i:ncol) {
                tmp <- kmeans(arg2, seq[i], nstart=numrep[i], iter.max=maxitr[i])
                res[,i] <- tmp$cluster
            }
            out <- data.frame(res)
            names(out) <- as.character(seq)
            row.names(out) <- attr(arg2, "Labels")
            out <- list(clustering = out, seq = seq, maxitr=maxitr,
                        numrep=numrep, type='keans', source=deparse(substitute(arg2)))
            class(out) <- "stride"
            out
        }
    } else if (class(arg2) == "hclust") {
        res <- matrix(NA, nrow = length(arg2$order), ncol = ncol)
        for (i in seq) {
            pnt <- pnt + 1
            res[, pnt] <- cutree(arg2, i)
        }
        out <- data.frame(res)
        names(out) <- as.character(seq)
        row.names(out) <- arg2$labels
        out <- list(clustering = out, seq = seq, type='hclust', source=deparse(substitute(arg2)))
        class(out) <- "stride"
        out
    } else print("you must enter an object of class 'dist' or class 'hclust'")
}


plot.stride <- function (x,dist,col2=4, ...) 
{
    oldpar <- par(no.readonly=TRUE)
    par(mar=c(5,4,4,4)+0.1,bg='white',fg='black')
    plot(partana(x,dist),xlab='Number of Clusters',
        ylab='Partana Ratio',type='b')
    par(new=TRUE)
    tmp <- silhouette(x,dist)
    plot(tmp,axes=FALSE,xlab='',ylab='',col=col2,type='b')
    axis(4,at=pretty(range(tmp$sil_width)),col.axis=col2,col.ticks=col2)
    mtext('Silhouette Width',4,2.5,col=col2)
    par(oldpar)
}

extract <- function(stride,k)
{
    UseMethod("extract")
}

extract.stride <- function(stride,k)
{
   pnt <- which(stride$seq==k)
   out <- list(clustering=stride$clustering[,pnt])
   class(out) <- 'clustering'
   out
}

Try the optpart package in your browser

Any scripts or data that you put into this service are public.

optpart documentation built on May 2, 2019, 3:27 a.m.