This function returns a list with *n + 1* elements containing
the order *k* Chebyshev polynomials of the first kind, *C_k ≤ft( x\right)*,
for orders *k = 0,\;1,\; … ,\;n*.

1 | ```
chebyshev.c.polynomials(n, normalized=FALSE)
``` |

`n` |
integer value for the highest polynomial order |

`normalized` |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |

The function `chebyshev.c.recurrences`

produces a data frame with the recurrence relation parameters
for the polynomials. If the `normalized`

argument is FALSE, the
function `orthogonal.polynomials`

is used to construct the list of orthogonal polynomial objects.
Otherwise, the function `orthonormal.polynomials`

is used to construct the
list of orthonormal polynomial objects.

A list of *n + 1* polynomial objects

`1 ` |
order 0 Chebyshev polynomial |

`2 ` |
order 1 Chebyshev polynomial |

...

`n+1 ` |
order |

Frederick Novomestky fnovomes@poly.edu

Abramowitz, M. and I. A. Stegun, 1968. *Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables*, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. *Methods of Mathematical Physics*,
John Wiley, New York, NY.

Szego, G., 1939. *Orthogonal Polynomials*, 23, American Mathematical Society
Colloquium Publications, Providence, RI.

`chebyshev.c.recurrences`

,
`orthogonal.polynomials`

,
`orthonormal.polynomials`

1 2 3 4 5 6 7 8 9 10 | ```
###
### gemerate a list of normalized C Chebyshev polynomials of orders 0 to 10
###
normalized.p.list <- chebyshev.c.polynomials( 10, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized C Chebyshev polynomials of orders 0 to 10
###
unnormalized.p.list <- chebyshev.c.polynomials( 10, normalized=FALSE )
print( unnormalized.p.list )
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.