This function returns the value of the weight function for the order *k*
Jacobi polynomial, *P_k^{≤ft( {α ,β } \right)} ≤ft( x \right)*.

1 | ```
jacobi.p.weight(x,alpha,beta)
``` |

`x` |
the function argument which can be a vector |

`alpha` |
the first polynomial parameter |

`beta` |
the second polynomial parameter |

The function takes on non-zero values in the interval * ≤ft( -1,1 \right) *. The formula
used to compute the weight function is as follows.

*w≤ft( x \right) = ≤ft( {1 - x} \right)^α \;≤ft( {1 + x} \right)^β *

The value of the weight function

Frederick Novomestky fnovomes@poly.edu

Abramowitz, M. and I. A. Stegun, 1968. *Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables*, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. *Methods of Mathematical Physics*,
John Wiley, New York, NY.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992.
*Numerical Recipes in C*, Cambridge University Press, Cambridge, U.K.

Szego, G., 1939. *Orthogonal Polynomials*, 23, American Mathematical Society
Colloquium Publications, Providence, RI.

1 2 3 4 5 6 | ```
###
### compute the Jacobi P weight function for argument values
### between -1 and 1
###
x <- seq( -1, 1, .01 )
y <- jacobi.p.weight( x, 2, 2 )
``` |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.