Weight function for the Jacobi polynomial

Share:

Description

This function returns the value of the weight function for the order k Jacobi polynomial, P_k^{≤ft( {α ,β } \right)} ≤ft( x \right).

Usage

1

Arguments

x

the function argument which can be a vector

alpha

the first polynomial parameter

beta

the second polynomial parameter

Details

The function takes on non-zero values in the interval ≤ft( -1,1 \right) . The formula used to compute the weight function is as follows.

w≤ft( x \right) = ≤ft( {1 - x} \right)^α \;≤ft( {1 + x} \right)^β

Value

The value of the weight function

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

Examples

1
2
3
4
5
6
###
### compute the Jacobi P weight function for argument values
### between -1 and 1
###
x <- seq( -1, 1, .01 )
y <- jacobi.p.weight( x, 2, 2 )

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.