# jacobi.p.inner.products: Inner products of Jacobi polynomials In orthopolynom: Collection of functions for orthogonal and orthonormal polynomials

## Description

This function returns a vector with n + 1 elements containing the inner product of an order k Jacobi polynomial, P_k^{≤ft( {α ,β } \right)} ≤ft( x \right), with itself (i.e. the norm squared) for orders k = 0,\;1,\; … ,\;n .

## Usage

 1 jacobi.p.inner.products(n,alpha,beta) 

## Arguments

 n integer value for the highest polynomial order alpha numeric value for the first polynomial parameter beta numeric value for the first polynomial parameter

## Details

The formula used to compute the innser products is as follows.

h_n = ≤ft\langle {P_n^{≤ft( {α ,β } \right)} |P_n^{≤ft( {α ,β } \right)} } \right\rangle = \frac{{2^{α + β + 1} }} {{2\,n + α + β + 1}}\frac{{Γ ≤ft( {n + α + 1} \right)\,Γ ≤ft( {n + β + 1} \right)}} {{n!\;Γ ≤ft( {n + α + β + 1} \right)}}.

## Value

A vector with n + 1 elements

 1  inner product of order 0 orthogonal polynomial 2  inner product of order 1 orthogonal polynomial

...

 n+1  inner product of order n orthogonal polynomial

## Author(s)

Frederick Novomestky [email protected]

## References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

## Examples

 1 2 3 4 5 ### ### generate the inner product vector for the P Jacobi polynomials of orders 0 to 10 ### h <- jacobi.p.inner.products( 10, 2, 2 ) print( h ) 

orthopolynom documentation built on May 29, 2017, 4:24 p.m.