jacobi.p.inner.products: Inner products of Jacobi polynomials

Description Usage Arguments Details Value Author(s) References Examples

Description

This function returns a vector with n + 1 elements containing the inner product of an order k Jacobi polynomial, P_k^{≤ft( {α ,β } \right)} ≤ft( x \right), with itself (i.e. the norm squared) for orders k = 0,\;1,\; … ,\;n .

Usage

1

Arguments

n

integer value for the highest polynomial order

alpha

numeric value for the first polynomial parameter

beta

numeric value for the first polynomial parameter

Details

The formula used to compute the innser products is as follows.

h_n = ≤ft\langle {P_n^{≤ft( {α ,β } \right)} |P_n^{≤ft( {α ,β } \right)} } \right\rangle = \frac{{2^{α + β + 1} }} {{2\,n + α + β + 1}}\frac{{Γ ≤ft( {n + α + 1} \right)\,Γ ≤ft( {n + β + 1} \right)}} {{n!\;Γ ≤ft( {n + α + β + 1} \right)}}.

Value

A vector with n + 1 elements

1

inner product of order 0 orthogonal polynomial

2

inner product of order 1 orthogonal polynomial

...

n+1

inner product of order n orthogonal polynomial

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

Examples

1
2
3
4
5
###
### generate the inner product vector for the P Jacobi polynomials of orders 0 to 10
###
h <- jacobi.p.inner.products( 10, 2, 2 )
print( h )


Search within the orthopolynom package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.