hermite.h.recurrences: Recurrence relations for Hermite polynomials

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/hermite.h.recurrences.R

Description

This function returns a data frame with n + 1 rows and four named columns containing the coefficient vectors c, d, e and f of the recurrence relations for the order k Hermite polynomial, H_k ≤ft( x \right), and for orders k = 0,\;1,\; … ,\;n.

Usage

1

Arguments

n

integer value for the highest polynomial order

normalized

boolean value which, if TRUE, returns recurrence relations for normalized polynomials

Value

A data frame with the recurrence relation parameters.

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

hermite.h.inner.products,

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
###
### generate the recurrences data frame for 
### the normalized Hermite H polynomials
### of orders 0 to 10.
###
normalized.r <- hermite.h.recurrences( 10, normalized=TRUE )
print( normalized.r )
###
### generate the recurrences data frame for 
### the unnormalized Hermite H polynomials
### of orders 0 to 10.
###
unnormalized.r <- hermite.h.recurrences( 10, normalized=FALSE )
print( unnormalized.r )

Example output

Loading required package: polynom
   c d         e         f
1  1 0 1.4142136 0.0000000
2  1 0 1.0000000 0.7071068
3  1 0 0.8164966 0.8164966
4  1 0 0.7071068 0.8660254
5  1 0 0.6324555 0.8944272
6  1 0 0.5773503 0.9128709
7  1 0 0.5345225 0.9258201
8  1 0 0.5000000 0.9354143
9  1 0 0.4714045 0.9428090
10 1 0 0.4472136 0.9486833
11 1 0 0.4264014 0.9534626
   c d e  f
1  1 0 2  0
2  1 0 2  2
3  1 0 2  4
4  1 0 2  6
5  1 0 2  8
6  1 0 2 10
7  1 0 2 12
8  1 0 2 14
9  1 0 2 16
10 1 0 2 18
11 1 0 2 20

orthopolynom documentation built on May 2, 2019, 3:22 a.m.