gegenbauer.polynomials: Create list of Gegenbauer polynomials

View source: R/gegenbauer.polynomials.R

gegenbauer.polynomialsR Documentation

Create list of Gegenbauer polynomials

Description

This function returns a list with n + 1 elements containing the order k Gegenbauer polynomials, C_k^{≤ft( α \right)} ≤ft( x \right), for orders k = 0,\;1,\; … ,\;n.

Usage

gegenbauer.polynomials(n, alpha, normalized=FALSE)

Arguments

n

integer value for the highest polynomial order

alpha

polynomial parameter

normalized

a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials

Details

The function gegenbauer.recurrences produces a data frame with the recurrence relation parameters for the polynomials. If the normalized argument is FALSE, the function orthogonal.polynomials is used to construct the list of orthogonal polynomial objects. Otherwise, the function orthonormal.polynomials is used to construct the list of orthonormal polynomial objects.

Value

A list of n + 1 polynomial objects

1

order 0 Gegenbauer polynomial

2

order 1 Gegenbauer polynomial

...

n+1

order n Chebyshev polynomial

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

gegenbauer.recurrences, orthogonal.polynomials, orthonormal.polynomials

Examples

###
### gemerate a list of normalized Gegenbauer polynomials of orders 0 to 10
### polynomial parameter is 1.0
###
normalized.p.list <- gegenbauer.polynomials( 10, 1, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized Gegenbauer polynomials of orders 0 to 10
### polynomial parameter is 1.0
###
unnormalized.p.list <- gegenbauer.polynomials( 10, 1, normalized=FALSE )
print( unnormalized.p.list )

orthopolynom documentation built on Oct. 3, 2022, 5:08 p.m.