Description Usage Arguments Details Value Examples
Generate a regression table in data.frame
format from a set of model fit objects.
Currently supports lm, glm, survreg, and ivreg
model outcomes.
1 2 3 |
fitlist |
list of regression outcomes |
digits |
number of dicimal places for real numbers |
alpha |
vector of significance levels to star |
bracket |
stats to be in brackets |
starred |
stats to put stars on |
robust |
if TRUE, robust standard error is used |
small |
if TRUE, small sample parameter distribution is used |
constlast |
if TRUE, intercept is moved to the end of coefficient list |
norepeat |
if TRUE, repeated variable names are replaced by a empty string |
displayed |
a list of named logicals to customize the stats to display |
... |
alternative way to specify which stats to display |
Use outreg_stat_list to see the available stats
names. The stats names are to be used for specifying
bracket, starred, and displayed options.
Statistics to include can be chosen by displayed option or
by `...`.
For example, outreg(fitlist, displayed = list(pv = TRUE)) is
identical with outreg(fitlist pv = TRUE), and
p values of coefficients are displayed.
regression table in data.frame format
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | fitlist <- list(lm(mpg ~ cyl, data = mtcars),
lm(mpg ~ cyl + wt + hp, data = mtcars),
lm(mpg ~ cyl + wt + hp + drat, data = mtcars))
outreg(fitlist)
# with custom regression names
outreg(setNames(fitlist, c('small', 'medium', 'large')))
# star on standard errors, instead of estimate
outreg(fitlist, starred = 'se')
# include other stats
outreg(fitlist, pv = TRUE, tv = TRUE, se = FALSE)
# poisson regression
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
fitlist2 <- list(glm(counts ~ outcome, family = poisson()),
glm(counts ~ outcome + treatment, family = poisson()))
outreg(fitlist2)
# logistic regression
fitlist3 <- list(glm(cbind(ncases, ncontrols) ~ agegp,
data = esoph, family = binomial()),
glm(cbind(ncases, ncontrols) ~ agegp + tobgp + alcgp,
data = esoph, family = binomial()),
glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
data = esoph, family = binomial()))
outreg(fitlist3)
# survival regression
library(survival)
fitlist4 <- list(survreg(Surv(time, status) ~ ph.ecog + age,
data = lung),
survreg(Surv(time, status) ~ ph.ecog + age + strata(sex),
data = lung))
outreg(fitlist4)
# tobit regression
fitlist5 <- list(survreg(Surv(durable, durable>0, type='left') ~ 1,
data=tobin, dist='gaussian'),
survreg(Surv(durable, durable>0, type='left') ~ age + quant,
data=tobin, dist='gaussian'))
outreg(fitlist5)
# instrumental variable regression
library(AER)
data("CigarettesSW", package = "AER")
CigarettesSW$rprice <- with(CigarettesSW, price/cpi)
CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi)
fitlist6 <- list(OLS = lm(log(packs) ~ log(rprice) + log(rincome),
data = CigarettesSW, subset = year == "1995"),
IV1 = ivreg(log(packs) ~ log(rprice) + log(rincome) |
log(rincome) + tdiff + I(tax/cpi),
data = CigarettesSW, subset = year == "1995"),
IV2 = ivreg(log(packs) ~ log(rprice) + log(rincome) |
log(population) + tdiff + I(tax/cpi),
data = CigarettesSW, subset = year == "1995"))
outreg(fitlist6)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.