| mle.GRW | R Documentation |
Analytical ML estimator for random walk and stasis models
mle.GRW(y)
mle.URW(y)
mle.Stasis(y)
y |
a |
a vector of mstep and vstep for mle.GRW,
vstep for mle.URW, and theta and omega for
mle.Stasis
mle.URW(): ML parameter estimates for URW model
mle.Stasis(): ML parameter estimates for Stasis model
These analytical solutions assume even spacing of samples and equal sampling variance in each, which will usually be violated in real data. They are used here mostly to generate initial parameter estimates for numerical optimization; they not likely to be called directly by the user.
fitSimple
y <- sim.GRW(ms = 1, vs = 1)
w <- mle.GRW(y)
print(w)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.