| opt.joint.GRW | R Documentation | 
Fit evolutionary models using the "Joint" parameterization
opt.joint.GRW(
  y,
  pool = TRUE,
  cl = list(fnscale = -1),
  meth = "L-BFGS-B",
  hess = FALSE
)
opt.joint.URW(
  y,
  pool = TRUE,
  cl = list(fnscale = -1),
  meth = "L-BFGS-B",
  hess = FALSE
)
opt.joint.Stasis(
  y,
  pool = TRUE,
  cl = list(fnscale = -1),
  meth = "L-BFGS-B",
  hess = FALSE
)
opt.joint.StrictStasis(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)
| y | a  | 
| pool | if  | 
| cl | optional control list, passed to  | 
| meth | optimization algorithm, passed to  | 
| hess | if TRUE, return standard errors of parameter estimates from the hessian matrix | 
These functions use the joint distribution of population means to fit models using a full maximum-likelihood approach. This approach was found to have somewhat better performance than the "AD" approach, especially for noisy trends (Hunt, 2008).
a paleoTSfit object with the model fitting results
opt.joint.URW(): fit the URW model by the Joint parameterization
opt.joint.Stasis(): fit the Stasis model by the Joint parameterization
opt.joint.StrictStasis(): fit the Strict Stasis model by the Joint parameterization
It is easier to use the convenience function fitSimple.
Hunt, G., M. J. Hopkins and S. Lidgard. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proc. Natl. Acad. Sci. USA 112(16): 4885-4890.
fitSimple, opt.GRW
x <- sim.GRW(ns = 20, ms = 1)  # strong trend
plot(x)
w.grw <- opt.joint.GRW(x)
w.urw <- opt.joint.URW(x)
compareModels(w.grw, w.urw)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.