Nothing
calc_node_activities <- function(net, method = c("BNp", "SDDS", "PEW"), params,
steps, repeats = 1000, initial_prob = NULL, last_step = FALSE,
asynchronous = TRUE, update_prob = NULL) {
if (!is.BooleanNetwork(net)) {
stop("The value of the argument \"net\" must accord to the \"BooleanNetwork\" definition in \"BoolNet\".")
}
if (!is.scalar(steps)) {
stop("The value of the argument \"steps\" must be a scalar.")
}
if (!is.nonnegative.integer(steps)) {
stop("The value of the argument \"steps\" must be a non-negative integer.")
}
if (!is.scalar(repeats)) {
stop("The value of the argument \"repeats\" must be a scalar.")
}
if (!is.positive.integer(repeats)) {
stop("The value of the argument \"repeats\" must be a positive integer.")
}
if (!is.null(initial_prob)) {
if (is.vector(initial_prob)) {
if (length(initial_prob) != length(net$genes)) {
stop("The length of \"initial_prob\" must be equal to the number of network nodes.")
}
if (!is.all_in_range_0_1(initial_prob)) {
stop("All values in \"initial_prob\" must be in the range [0,1].")
}
} else {
stop("The value of the argument \"initial_prob\" must be a vector.")
}
}
if (!is.logical_value(last_step)) {
stop("The value of the argument \"last_step\" must be logical (TRUE or FALSE).")
}
if (!is.logical_value(asynchronous)) {
stop("The value of the argument \"asynchronous\" must be logical (TRUE or FALSE).")
}
if (!is.null(update_prob)) {
if (asynchronous) {
if (is.vector(update_prob)) {
if (length(update_prob) != length(net$genes)) {
stop("The length of \"update_prob\" must be a equal to the number of network nodes.")
}
if (!is.all_in_range_0_1(update_prob)) {
stop("All values in \"initial_prob\" must be in the range [0,1].")
}
if (sum(update_prob) != 1) {
stop("The sum of the \"update_prob\" values must be one.")
}
} else {
stop("The value of the argument \"update_prob\" must be a vector.")
}
} else {
warning("Since \"asynchronous = FALSE\", ignoring \"update_prob\".")
}
}
# This code is derived from the BoolNet package.
# Original file: BoolNet/R/getAttractors.R
# Original function: getAttractors
# Modifications: Changed the naming of the variables.
# The start of the derived code from BoolNet
inputs <- as.integer(unlist(lapply(net$interactions, function(interaction) interaction$input)))
input_positions <- as.integer(cumsum(c(0, sapply(net$interactions, function(interaction) length(interaction$input)))))
outputs <- as.integer(unlist(lapply(net$interactions, function(interaction) interaction$func)))
output_positions <- as.integer(cumsum(c(0, sapply(net$interactions, function(interaction) length(interaction$func)))))
# The end of the derived code from BoolNet
switch(match.arg(method),
BNp = {
if (length(params) != length(net$genes)) {
stop("The length of \"params\" must be equal to the number of network nodes.")
}
if (!is.all_in_range_0_1(params)) {
stop("The value of the argument \"params\" must be a vector consisting of values in the range [0,1].")
}
if (asynchronous) {
node_activities <- .Call("get_node_activities_BNp_async_R", inputs, input_positions,
outputs, output_positions,
as.integer(net$fixed), params,
initial_prob, update_prob,
as.integer(steps), as.integer(repeats),
as.integer(last_step),
PACKAGE = "pastboon"
)
} else {
node_activities <- .Call("get_node_activities_BNp_sync_R", inputs, input_positions,
outputs, output_positions,
as.integer(net$fixed), params,
initial_prob, as.integer(steps), as.integer(repeats),
as.integer(last_step),
PACKAGE = "pastboon"
)
}
},
SDDS = {
if (!is.list(params) || is.null(names(params))) {
stop("The value of the argument \"params\" must be a named list.")
}
if (!all(c("p00", "p01", "p10", "p11") %in% names(params))) {
stop("The value of the argument \"params\" must be a named list consisting of \"p00\", \"p01\", \"p10\", and \"p11\".")
}
if (length(params$p00) != length(net$genes) |
length(params$p01) != length(net$genes) |
length(params$p10) != length(net$genes) |
length(params$p11) != length(net$genes)) {
stop("The lengths of \"p00\", \"p01\", \"p10\", and \"p11\" must be equal to the number of network nodes.")
}
if (!is.all_in_range_0_1(params$p00) | !is.all_in_range_0_1(params$p01) | !is.all_in_range_0_1(params$p10) | !is.all_in_range_0_1(params$p11)) {
stop("The vectors\"p00\", \"p01\", \"p10\", and \"p11\" must consist of values in the range [0,1].")
}
if (asynchronous) {
node_activities <- .Call("get_node_activities_SDDS_async_R", inputs, input_positions,
outputs, output_positions, as.integer(net$fixed),
params$p00, params$p01, params$p10, params$p11,
initial_prob, update_prob, as.integer(steps),
as.integer(repeats), as.integer(last_step),
PACKAGE = "pastboon"
)
} else {
node_activities <- .Call("get_node_activities_SDDS_sync_R", inputs, input_positions,
outputs, output_positions,
as.integer(net$fixed),
params$p00, params$p01, params$p10, params$p11,
initial_prob,
as.integer(steps),
as.integer(repeats),
as.integer(last_step),
PACKAGE = "pastboon"
)
}
},
PEW = {
if (!is.list(params) || is.null(names(params))) {
stop("The value of the argument \"params\" must be a named list.")
}
if (!all(c("p_on", "p_off") %in% names(params))) {
stop("The value of the argument \"params\" must be a named list consisting of \"p_on\" and \"p_off\".")
}
if (length(params$p_on) != nrow(extract_edges(net)) |
length(params$p_off) != nrow(extract_edges(net))) {
stop("The lengths of \"p_on\" and \"p_off\" must be equal to the number of network edges.")
}
if (!is.all_in_range_0_1(params$p_on) | !is.all_in_range_0_1(params$p_off)) {
stop("The vectors \"p_on\" and \"p_off\" must consist of values in the range [0,1].")
}
if (asynchronous) {
node_activities <- .Call("get_node_activities_PEW_async_R", inputs, input_positions,
outputs, output_positions,
as.integer(net$fixed),
params$p_on, params$p_off, initial_prob, update_prob,
as.integer(steps), as.integer(repeats),
as.integer(last_step),
PACKAGE = "pastboon"
)
} else {
node_activities <- .Call("get_node_activities_PEW_sync_R", inputs, input_positions,
outputs, output_positions,
as.integer(net$fixed),
params$p_on, params$p_off, initial_prob,
as.integer(steps),
as.integer(repeats),
as.integer(last_step),
PACKAGE = "pastboon"
)
}
},
stop("The value of the argument \"method\" must be one of \"SDDS\",\"BNp\",\"PEW\"")
)
if (last_step) {
names(node_activities) <- net$genes
} else {
node_activities <- matrix(node_activities, nrow = steps + 1, byrow = FALSE)
colnames(node_activities) <- net$genes
rownames(node_activities) <- 1:(steps + 1)
}
return(node_activities)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.