Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----init_steps, eval=TRUE----------------------------------------------------
suppressPackageStartupMessages(library(pathfindR))
data(example_pathfindR_input)
head(example_pathfindR_input, 3)
## ----process------------------------------------------------------------------
# example_processed <- input_processing(
# input = example_pathfindR_input, # the input: in this case, differential expression results
# p_val_threshold = 0.05, # p value threshold to filter significant genes
# pin_name_path = "Biogrid", # the name of the PIN to use for active subnetwork search
# convert2alias = TRUE # boolean indicating whether or not to convert missing symbols to alias symbols in the PIN
# )
## ----gene_set-----------------------------------------------------------------
# # using "BioCarta" as our gene sets for enrichment
# biocarta_list <- fetch_gene_set(
# gene_sets = "BioCarta",
# min_gset_size = 10,
# max_gset_size = 300
# )
# biocarta_gsets <- biocarta_list[[1]]
# biocarta_descriptions <- biocarta_list[[2]]
## ----snw_search---------------------------------------------------------------
# n_iter <- 10 ## number of iterations
# combined_res <- NULL ## to store the result of each iteration
#
# for (i in 1:n_iter) {
# ###### Active Subnetwork Search
# snws_file <- paste0("active_snws_", i) # Name of output file
# active_snws <- active_snw_search(
# input_for_search = example_processed,
# pin_name_path = "Biogrid",
# snws_file = snws_file,
# score_quan_thr = 0.8, # you may tweak these arguments for optimal filtering of subnetworks
# sig_gene_thr = 0.02, # you may tweak these arguments for optimal filtering of subnetworks
# search_method = "GR", # we suggest using GR
# seedForRandom = i # setting seed to ensure reproducibility per iteration
# )
#
# ###### Enrichment Analyses
# current_res <- enrichment_analyses(
# snws = active_snws,
# sig_genes_vec = example_processed$GENE,
# pin_name_path = "Biogrid",
# genes_by_term = biocarta_gsets,
# term_descriptions = biocarta_descriptions,
# adj_method = "bonferroni",
# enrichment_threshold = 0.05,
# list_active_snw_genes = TRUE
# ) # listing the non-input active snw genes in output
#
# ###### Combine results via `rbind`
# combined_res <- rbind(combined_res, current_res)
# }
## ----post_proc----------------------------------------------------------------
# ###### Summarize Combined Enrichment Results
# summarized_df <- summarize_enrichment_results(combined_res,
# list_active_snw_genes = TRUE
# )
#
# ###### Annotate Affected Genes Involved in Each Enriched Term
# final_res <- annotate_term_genes(
# result_df = summarized_df,
# input_processed = example_processed,
# genes_by_term = biocarta_gsets
# )
## ----vis_pws------------------------------------------------------------------
# visualize_terms(
# result_df = final_res,
# hsa_KEGG = FALSE, # boolean to indicate whether human KEGG gene sets were used for enrichment analysis or not
# pin_name_path = "Biogrid"
# )
## ----enr_chart----------------------------------------------------------------
# enrichment_chart(final_res[1:10, ])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.