Nothing
# This file is generated by make.paws. Please do not edit here.
#' @importFrom paws.common get_config new_operation new_request send_request
#' @include bedrockagentruntime_service.R
NULL
#' Deletes memory from the specified memory identifier
#'
#' @description
#' Deletes memory from the specified memory identifier.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_delete_agent_memory/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_delete_agent_memory/) for full documentation.
#'
#' @param agentAliasId [required] The unique identifier of an alias of an agent.
#' @param agentId [required] The unique identifier of the agent to which the alias belongs.
#' @param memoryId The unique identifier of the memory.
#' @param sessionId The unique session identifier of the memory.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_delete_agent_memory
bedrockagentruntime_delete_agent_memory <- function(agentAliasId, agentId, memoryId = NULL, sessionId = NULL) {
op <- new_operation(
name = "DeleteAgentMemory",
http_method = "DELETE",
http_path = "/agents/{agentId}/agentAliases/{agentAliasId}/memories",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockagentruntime$delete_agent_memory_input(agentAliasId = agentAliasId, agentId = agentId, memoryId = memoryId, sessionId = sessionId)
output <- .bedrockagentruntime$delete_agent_memory_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$delete_agent_memory <- bedrockagentruntime_delete_agent_memory
#' Generates an SQL query from a natural language query
#'
#' @description
#' Generates an SQL query from a natural language query. For more information, see [Generate a query for structured data](https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base-generate-query.html) in the Amazon Bedrock User Guide.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_generate_query/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_generate_query/) for full documentation.
#'
#' @param queryGenerationInput [required] Specifies information about a natural language query to transform into
#' SQL.
#' @param transformationConfiguration [required] Specifies configurations for transforming the natural language query
#' into SQL.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_generate_query
bedrockagentruntime_generate_query <- function(queryGenerationInput, transformationConfiguration) {
op <- new_operation(
name = "GenerateQuery",
http_method = "POST",
http_path = "/generateQuery",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockagentruntime$generate_query_input(queryGenerationInput = queryGenerationInput, transformationConfiguration = transformationConfiguration)
output <- .bedrockagentruntime$generate_query_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$generate_query <- bedrockagentruntime_generate_query
#' Gets the sessions stored in the memory of the agent
#'
#' @description
#' Gets the sessions stored in the memory of the agent.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_get_agent_memory/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_get_agent_memory/) for full documentation.
#'
#' @param agentAliasId [required] The unique identifier of an alias of an agent.
#' @param agentId [required] The unique identifier of the agent to which the alias belongs.
#' @param maxItems The maximum number of items to return in the response. If the total
#' number of results is greater than this value, use the token returned in
#' the response in the `nextToken` field when making another request to
#' return the next batch of results.
#' @param memoryId [required] The unique identifier of the memory.
#' @param memoryType [required] The type of memory.
#' @param nextToken If the total number of results is greater than the maxItems value
#' provided in the request, enter the token returned in the `nextToken`
#' field in the response in this field to return the next batch of results.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_get_agent_memory
bedrockagentruntime_get_agent_memory <- function(agentAliasId, agentId, maxItems = NULL, memoryId, memoryType, nextToken = NULL) {
op <- new_operation(
name = "GetAgentMemory",
http_method = "GET",
http_path = "/agents/{agentId}/agentAliases/{agentAliasId}/memories",
host_prefix = "",
paginator = list(input_token = "nextToken", output_token = "nextToken", limit_key = "maxItems", result_key = "memoryContents"),
stream_api = FALSE
)
input <- .bedrockagentruntime$get_agent_memory_input(agentAliasId = agentAliasId, agentId = agentId, maxItems = maxItems, memoryId = memoryId, memoryType = memoryType, nextToken = nextToken)
output <- .bedrockagentruntime$get_agent_memory_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$get_agent_memory <- bedrockagentruntime_get_agent_memory
#' Sends a prompt for the agent to process and respond to
#'
#' @description
#' Sends a prompt for the agent to process and respond to. Note the following fields for the request:
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_invoke_agent/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_invoke_agent/) for full documentation.
#'
#' @param agentAliasId [required] The alias of the agent to use.
#' @param agentId [required] The unique identifier of the agent to use.
#' @param bedrockModelConfigurations Model performance settings for the request.
#' @param enableTrace Specifies whether to turn on the trace or not to track the agent's
#' reasoning process. For more information, see [Trace
#' enablement](https://docs.aws.amazon.com/bedrock/latest/userguide/agents-test.html#trace-events).
#' @param endSession Specifies whether to end the session with the agent or not.
#' @param inputText The prompt text to send the agent.
#'
#' If you include `returnControlInvocationResults` in the `sessionState`
#' field, the `inputText` field will be ignored.
#' @param memoryId The unique identifier of the agent memory.
#' @param sessionId [required] The unique identifier of the session. Use the same value across requests
#' to continue the same conversation.
#' @param sessionState Contains parameters that specify various attributes of the session. For
#' more information, see [Control session
#' context](https://docs.aws.amazon.com/bedrock/latest/userguide/agents-session-state.html).
#'
#' If you include `returnControlInvocationResults` in the `sessionState`
#' field, the `inputText` field will be ignored.
#' @param sourceArn The ARN of the resource making the request.
#' @param streamingConfigurations Specifies the configurations for streaming.
#'
#' To use agent streaming, you need permissions to perform the
#' `bedrock:InvokeModelWithResponseStream` action.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_invoke_agent
bedrockagentruntime_invoke_agent <- function(agentAliasId, agentId, bedrockModelConfigurations = NULL, enableTrace = NULL, endSession = NULL, inputText = NULL, memoryId = NULL, sessionId, sessionState = NULL, sourceArn = NULL, streamingConfigurations = NULL) {
op <- new_operation(
name = "InvokeAgent",
http_method = "POST",
http_path = "/agents/{agentId}/agentAliases/{agentAliasId}/sessions/{sessionId}/text",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockagentruntime$invoke_agent_input(agentAliasId = agentAliasId, agentId = agentId, bedrockModelConfigurations = bedrockModelConfigurations, enableTrace = enableTrace, endSession = endSession, inputText = inputText, memoryId = memoryId, sessionId = sessionId, sessionState = sessionState, sourceArn = sourceArn, streamingConfigurations = streamingConfigurations)
output <- .bedrockagentruntime$invoke_agent_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$invoke_agent <- bedrockagentruntime_invoke_agent
#' Invokes an alias of a flow to run the inputs that you specify and return
#' the output of each node as a stream
#'
#' @description
#' Invokes an alias of a flow to run the inputs that you specify and return the output of each node as a stream. If there's an error, the error is returned. For more information, see [Test a flow in Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/flows-test.html) in the [Amazon Bedrock User Guide](https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html).
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_invoke_flow/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_invoke_flow/) for full documentation.
#'
#' @param enableTrace Specifies whether to return the trace for the flow or not. Traces track
#' inputs and outputs for nodes in the flow. For more information, see
#' [Track each step in your prompt flow by viewing its trace in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/flows-trace.html).
#' @param executionId The unique identifier for the current flow execution. If you don't
#' provide a value, Amazon Bedrock creates the identifier for you.
#' @param flowAliasIdentifier [required] The unique identifier of the flow alias.
#' @param flowIdentifier [required] The unique identifier of the flow.
#' @param inputs [required] A list of objects, each containing information about an input into the
#' flow.
#' @param modelPerformanceConfiguration Model performance settings for the request.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_invoke_flow
bedrockagentruntime_invoke_flow <- function(enableTrace = NULL, executionId = NULL, flowAliasIdentifier, flowIdentifier, inputs, modelPerformanceConfiguration = NULL) {
op <- new_operation(
name = "InvokeFlow",
http_method = "POST",
http_path = "/flows/{flowIdentifier}/aliases/{flowAliasIdentifier}",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockagentruntime$invoke_flow_input(enableTrace = enableTrace, executionId = executionId, flowAliasIdentifier = flowAliasIdentifier, flowIdentifier = flowIdentifier, inputs = inputs, modelPerformanceConfiguration = modelPerformanceConfiguration)
output <- .bedrockagentruntime$invoke_flow_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$invoke_flow <- bedrockagentruntime_invoke_flow
#' Invokes an inline Amazon Bedrock agent using the configurations you
#' provide with the request
#'
#' @description
#' Invokes an inline Amazon Bedrock agent using the configurations you provide with the request.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_invoke_inline_agent/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_invoke_inline_agent/) for full documentation.
#'
#' @param actionGroups A list of action groups with each action group defining the action the
#' inline agent needs to carry out.
#' @param bedrockModelConfigurations Model settings for the request.
#' @param customerEncryptionKeyArn The Amazon Resource Name (ARN) of the Amazon Web Services KMS key to use
#' to encrypt your inline agent.
#' @param enableTrace Specifies whether to turn on the trace or not to track the agent's
#' reasoning process. For more information, see [Using
#' trace](https://docs.aws.amazon.com/bedrock/latest/userguide/trace-events.html).
#'
#' </p>
#' @param endSession Specifies whether to end the session with the inline agent or not.
#' @param foundationModel [required] The [model identifier
#' (ID)](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html#model-ids-arns)
#' of the model to use for orchestration by the inline agent. For example,
#' `meta.llama3-1-70b-instruct-v1:0`.
#' @param guardrailConfiguration The
#' [guardrails](https://docs.aws.amazon.com/bedrock/latest/userguide/guardrails.html)
#' to assign to the inline agent.
#' @param idleSessionTTLInSeconds The number of seconds for which the inline agent should maintain session
#' information. After this time expires, the subsequent
#' [`invoke_inline_agent`][bedrockagentruntime_invoke_inline_agent] request
#' begins a new session.
#'
#' A user interaction remains active for the amount of time specified. If
#' no conversation occurs during this time, the session expires and the
#' data provided before the timeout is deleted.
#' @param inlineSessionState Parameters that specify the various attributes of a sessions. You can
#' include attributes for the session or prompt or, if you configured an
#' action group to return control, results from invocation of the action
#' group. For more information, see [Control session
#' context](https://docs.aws.amazon.com/bedrock/latest/userguide/agents-session-state.html).
#'
#' If you include `returnControlInvocationResults` in the `sessionState`
#' field, the `inputText` field will be ignored.
#' @param inputText The prompt text to send to the agent.
#'
#' If you include `returnControlInvocationResults` in the `sessionState`
#' field, the `inputText` field will be ignored.
#' @param instruction [required] The instructions that tell the inline agent what it should do and how it
#' should interact with users.
#' @param knowledgeBases Contains information of the knowledge bases to associate with.
#' @param promptOverrideConfiguration Configurations for advanced prompts used to override the default prompts
#' to enhance the accuracy of the inline agent.
#' @param sessionId [required] The unique identifier of the session. Use the same value across requests
#' to continue the same conversation.
#' @param streamingConfigurations Specifies the configurations for streaming.
#'
#' To use agent streaming, you need permissions to perform the
#' `bedrock:InvokeModelWithResponseStream` action.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_invoke_inline_agent
bedrockagentruntime_invoke_inline_agent <- function(actionGroups = NULL, bedrockModelConfigurations = NULL, customerEncryptionKeyArn = NULL, enableTrace = NULL, endSession = NULL, foundationModel, guardrailConfiguration = NULL, idleSessionTTLInSeconds = NULL, inlineSessionState = NULL, inputText = NULL, instruction, knowledgeBases = NULL, promptOverrideConfiguration = NULL, sessionId, streamingConfigurations = NULL) {
op <- new_operation(
name = "InvokeInlineAgent",
http_method = "POST",
http_path = "/agents/{sessionId}",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockagentruntime$invoke_inline_agent_input(actionGroups = actionGroups, bedrockModelConfigurations = bedrockModelConfigurations, customerEncryptionKeyArn = customerEncryptionKeyArn, enableTrace = enableTrace, endSession = endSession, foundationModel = foundationModel, guardrailConfiguration = guardrailConfiguration, idleSessionTTLInSeconds = idleSessionTTLInSeconds, inlineSessionState = inlineSessionState, inputText = inputText, instruction = instruction, knowledgeBases = knowledgeBases, promptOverrideConfiguration = promptOverrideConfiguration, sessionId = sessionId, streamingConfigurations = streamingConfigurations)
output <- .bedrockagentruntime$invoke_inline_agent_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$invoke_inline_agent <- bedrockagentruntime_invoke_inline_agent
#' Optimizes a prompt for the task that you specify
#'
#' @description
#' Optimizes a prompt for the task that you specify. For more information, see [Optimize a prompt](https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management-optimize.html) in the [Amazon Bedrock User Guide](https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html).
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_optimize_prompt/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_optimize_prompt/) for full documentation.
#'
#' @param input [required] Contains the prompt to optimize.
#' @param targetModelId [required] The unique identifier of the model that you want to optimize the prompt
#' for.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_optimize_prompt
bedrockagentruntime_optimize_prompt <- function(input, targetModelId) {
op <- new_operation(
name = "OptimizePrompt",
http_method = "POST",
http_path = "/optimize-prompt",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockagentruntime$optimize_prompt_input(input = input, targetModelId = targetModelId)
output <- .bedrockagentruntime$optimize_prompt_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$optimize_prompt <- bedrockagentruntime_optimize_prompt
#' Reranks the relevance of sources based on queries
#'
#' @description
#' Reranks the relevance of sources based on queries. For more information, see [Improve the relevance of query responses with a reranker model](https://docs.aws.amazon.com/bedrock/latest/userguide/rerank.html).
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_rerank/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_rerank/) for full documentation.
#'
#' @param nextToken If the total number of results was greater than could fit in a response,
#' a token is returned in the `nextToken` field. You can enter that token
#' in this field to return the next batch of results.
#' @param queries [required] An array of objects, each of which contains information about a query to
#' submit to the reranker model.
#' @param rerankingConfiguration [required] Contains configurations for reranking.
#' @param sources [required] An array of objects, each of which contains information about the
#' sources to rerank.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_rerank
bedrockagentruntime_rerank <- function(nextToken = NULL, queries, rerankingConfiguration, sources) {
op <- new_operation(
name = "Rerank",
http_method = "POST",
http_path = "/rerank",
host_prefix = "",
paginator = list(input_token = "nextToken", output_token = "nextToken", result_key = "results"),
stream_api = FALSE
)
input <- .bedrockagentruntime$rerank_input(nextToken = nextToken, queries = queries, rerankingConfiguration = rerankingConfiguration, sources = sources)
output <- .bedrockagentruntime$rerank_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$rerank <- bedrockagentruntime_rerank
#' Queries a knowledge base and retrieves information from it
#'
#' @description
#' Queries a knowledge base and retrieves information from it.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_retrieve/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_retrieve/) for full documentation.
#'
#' @param guardrailConfiguration Guardrail settings.
#' @param knowledgeBaseId [required] The unique identifier of the knowledge base to query.
#' @param nextToken If there are more results than can fit in the response, the response
#' returns a `nextToken`. Use this token in the `nextToken` field of
#' another request to retrieve the next batch of results.
#' @param retrievalConfiguration Contains configurations for the knowledge base query and retrieval
#' process. For more information, see [Query
#' configurations](https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html).
#' @param retrievalQuery [required] Contains the query to send the knowledge base.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_retrieve
bedrockagentruntime_retrieve <- function(guardrailConfiguration = NULL, knowledgeBaseId, nextToken = NULL, retrievalConfiguration = NULL, retrievalQuery) {
op <- new_operation(
name = "Retrieve",
http_method = "POST",
http_path = "/knowledgebases/{knowledgeBaseId}/retrieve",
host_prefix = "",
paginator = list(input_token = "nextToken", output_token = "nextToken", result_key = "retrievalResults"),
stream_api = FALSE
)
input <- .bedrockagentruntime$retrieve_input(guardrailConfiguration = guardrailConfiguration, knowledgeBaseId = knowledgeBaseId, nextToken = nextToken, retrievalConfiguration = retrievalConfiguration, retrievalQuery = retrievalQuery)
output <- .bedrockagentruntime$retrieve_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$retrieve <- bedrockagentruntime_retrieve
#' Queries a knowledge base and generates responses based on the retrieved
#' results and using the specified foundation model or inference profile
#'
#' @description
#' Queries a knowledge base and generates responses based on the retrieved results and using the specified foundation model or [inference profile](https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html). The response only cites sources that are relevant to the query.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_retrieve_and_generate/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_retrieve_and_generate/) for full documentation.
#'
#' @param input [required] Contains the query to be made to the knowledge base.
#' @param retrieveAndGenerateConfiguration Contains configurations for the knowledge base query and retrieval
#' process. For more information, see [Query
#' configurations](https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html).
#' @param sessionConfiguration Contains details about the session with the knowledge base.
#' @param sessionId The unique identifier of the session. When you first make a
#' [`retrieve_and_generate`][bedrockagentruntime_retrieve_and_generate]
#' request, Amazon Bedrock automatically generates this value. You must
#' reuse this value for all subsequent requests in the same conversational
#' session. This value allows Amazon Bedrock to maintain context and
#' knowledge from previous interactions. You can't explicitly set the
#' `sessionId` yourself.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_retrieve_and_generate
bedrockagentruntime_retrieve_and_generate <- function(input, retrieveAndGenerateConfiguration = NULL, sessionConfiguration = NULL, sessionId = NULL) {
op <- new_operation(
name = "RetrieveAndGenerate",
http_method = "POST",
http_path = "/retrieveAndGenerate",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockagentruntime$retrieve_and_generate_input(input = input, retrieveAndGenerateConfiguration = retrieveAndGenerateConfiguration, sessionConfiguration = sessionConfiguration, sessionId = sessionId)
output <- .bedrockagentruntime$retrieve_and_generate_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$retrieve_and_generate <- bedrockagentruntime_retrieve_and_generate
#' Queries a knowledge base and generates responses based on the retrieved
#' results, with output in streaming format
#'
#' @description
#' Queries a knowledge base and generates responses based on the retrieved results, with output in streaming format.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockagentruntime_retrieve_and_generate_stream/](https://www.paws-r-sdk.com/docs/bedrockagentruntime_retrieve_and_generate_stream/) for full documentation.
#'
#' @param input [required] Contains the query to be made to the knowledge base.
#' @param retrieveAndGenerateConfiguration Contains configurations for the knowledge base query and retrieval
#' process. For more information, see [Query
#' configurations](https://docs.aws.amazon.com/bedrock/latest/userguide/kb-test-config.html).
#' @param sessionConfiguration Contains details about the session with the knowledge base.
#' @param sessionId The unique identifier of the session. When you first make a
#' [`retrieve_and_generate`][bedrockagentruntime_retrieve_and_generate]
#' request, Amazon Bedrock automatically generates this value. You must
#' reuse this value for all subsequent requests in the same conversational
#' session. This value allows Amazon Bedrock to maintain context and
#' knowledge from previous interactions. You can't explicitly set the
#' `sessionId` yourself.
#'
#' @keywords internal
#'
#' @rdname bedrockagentruntime_retrieve_and_generate_stream
bedrockagentruntime_retrieve_and_generate_stream <- function(input, retrieveAndGenerateConfiguration = NULL, sessionConfiguration = NULL, sessionId = NULL) {
op <- new_operation(
name = "RetrieveAndGenerateStream",
http_method = "POST",
http_path = "/retrieveAndGenerateStream",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockagentruntime$retrieve_and_generate_stream_input(input = input, retrieveAndGenerateConfiguration = retrieveAndGenerateConfiguration, sessionConfiguration = sessionConfiguration, sessionId = sessionId)
output <- .bedrockagentruntime$retrieve_and_generate_stream_output()
config <- get_config()
svc <- .bedrockagentruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockagentruntime$operations$retrieve_and_generate_stream <- bedrockagentruntime_retrieve_and_generate_stream
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.