Nothing
# This file is generated by make.paws. Please do not edit here.
#' @importFrom paws.common get_config new_operation new_request send_request
#' @include bedrockruntime_service.R
NULL
#' The action to apply a guardrail
#'
#' @description
#' The action to apply a guardrail.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_apply_guardrail/](https://www.paws-r-sdk.com/docs/bedrockruntime_apply_guardrail/) for full documentation.
#'
#' @param guardrailIdentifier [required] The guardrail identifier used in the request to apply the guardrail.
#' @param guardrailVersion [required] The guardrail version used in the request to apply the guardrail.
#' @param source [required] The source of data used in the request to apply the guardrail.
#' @param content [required] The content details used in the request to apply the guardrail.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_apply_guardrail
bedrockruntime_apply_guardrail <- function(guardrailIdentifier, guardrailVersion, source, content) {
op <- new_operation(
name = "ApplyGuardrail",
http_method = "POST",
http_path = "/guardrail/{guardrailIdentifier}/version/{guardrailVersion}/apply",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockruntime$apply_guardrail_input(guardrailIdentifier = guardrailIdentifier, guardrailVersion = guardrailVersion, source = source, content = content)
output <- .bedrockruntime$apply_guardrail_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$apply_guardrail <- bedrockruntime_apply_guardrail
#' Sends messages to the specified Amazon Bedrock model
#'
#' @description
#' Sends messages to the specified Amazon Bedrock model. [`converse`][bedrockruntime_converse] provides a consistent interface that works with all models that support messages. This allows you to write code once and use it with different models. If a model has unique inference parameters, you can also pass those unique parameters to the model.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_converse/](https://www.paws-r-sdk.com/docs/bedrockruntime_converse/) for full documentation.
#'
#' @param modelId [required] Specifies the model or throughput with which to run inference, or the
#' prompt resource to use in inference. The value depends on the resource
#' that you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an inference profile, specify the inference profile ID or
#' its ARN. For a list of inference profile IDs, see [Supported Regions
#' and models for cross-region
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - To include a prompt that was defined in [Prompt
#' management](https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html),
#' specify the ARN of the prompt version to use.
#'
#' The Converse API doesn't support [imported
#' models](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html).
#' @param messages The messages that you want to send to the model.
#' @param system A prompt that provides instructions or context to the model about the
#' task it should perform, or the persona it should adopt during the
#' conversation.
#' @param inferenceConfig Inference parameters to pass to the model.
#' [`converse`][bedrockruntime_converse] and
#' [`converse_stream`][bedrockruntime_converse_stream] support a base set
#' of inference parameters. If you need to pass additional parameters that
#' the model supports, use the `additionalModelRequestFields` request
#' field.
#' @param toolConfig Configuration information for the tools that the model can use when
#' generating a response.
#'
#' For information about models that support tool use, see [Supported
#' models and model
#' features](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features).
#' @param guardrailConfig Configuration information for a guardrail that you want to use in the
#' request. If you include `guardContent` blocks in the `content` field in
#' the `messages` field, the guardrail operates only on those messages. If
#' you include no `guardContent` blocks, the guardrail operates on all
#' messages in the request body and in any included prompt resource.
#' @param additionalModelRequestFields Additional inference parameters that the model supports, beyond the base
#' set of inference parameters that [`converse`][bedrockruntime_converse]
#' and [`converse_stream`][bedrockruntime_converse_stream] support in the
#' `inferenceConfig` field. For more information, see [Model
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' @param promptVariables Contains a map of variables in a prompt from Prompt management to
#' objects containing the values to fill in for them when running model
#' invocation. This field is ignored if you don't specify a prompt resource
#' in the `modelId` field.
#' @param additionalModelResponseFieldPaths Additional model parameters field paths to return in the response.
#' [`converse`][bedrockruntime_converse] and
#' [`converse_stream`][bedrockruntime_converse_stream] return the requested
#' fields as a JSON Pointer object in the `additionalModelResponseFields`
#' field. The following is example JSON for
#' `additionalModelResponseFieldPaths`.
#'
#' `[ "/stop_sequence" ]`
#'
#' For information about the JSON Pointer syntax, see the [Internet
#' Engineering Task Force
#' (IETF)](https://datatracker.ietf.org/doc/html/rfc6901) documentation.
#'
#' [`converse`][bedrockruntime_converse] and
#' [`converse_stream`][bedrockruntime_converse_stream] reject an empty JSON
#' Pointer or incorrectly structured JSON Pointer with a `400` error code.
#' if the JSON Pointer is valid, but the requested field is not in the
#' model response, it is ignored by [`converse`][bedrockruntime_converse].
#' @param requestMetadata Key-value pairs that you can use to filter invocation logs.
#' @param performanceConfig Model performance settings for the request.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_converse
bedrockruntime_converse <- function(modelId, messages = NULL, system = NULL, inferenceConfig = NULL, toolConfig = NULL, guardrailConfig = NULL, additionalModelRequestFields = NULL, promptVariables = NULL, additionalModelResponseFieldPaths = NULL, requestMetadata = NULL, performanceConfig = NULL) {
op <- new_operation(
name = "Converse",
http_method = "POST",
http_path = "/model/{modelId}/converse",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockruntime$converse_input(modelId = modelId, messages = messages, system = system, inferenceConfig = inferenceConfig, toolConfig = toolConfig, guardrailConfig = guardrailConfig, additionalModelRequestFields = additionalModelRequestFields, promptVariables = promptVariables, additionalModelResponseFieldPaths = additionalModelResponseFieldPaths, requestMetadata = requestMetadata, performanceConfig = performanceConfig)
output <- .bedrockruntime$converse_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$converse <- bedrockruntime_converse
#' Sends messages to the specified Amazon Bedrock model and returns the
#' response in a stream
#'
#' @description
#' Sends messages to the specified Amazon Bedrock model and returns the response in a stream. [`converse_stream`][bedrockruntime_converse_stream] provides a consistent API that works with all Amazon Bedrock models that support messages. This allows you to write code once and use it with different models. Should a model have unique inference parameters, you can also pass those unique parameters to the model.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_converse_stream/](https://www.paws-r-sdk.com/docs/bedrockruntime_converse_stream/) for full documentation.
#'
#' @param modelId [required] Specifies the model or throughput with which to run inference, or the
#' prompt resource to use in inference. The value depends on the resource
#' that you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an inference profile, specify the inference profile ID or
#' its ARN. For a list of inference profile IDs, see [Supported Regions
#' and models for cross-region
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - To include a prompt that was defined in [Prompt
#' management](https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-management.html),
#' specify the ARN of the prompt version to use.
#'
#' The Converse API doesn't support [imported
#' models](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html).
#' @param messages The messages that you want to send to the model.
#' @param system A prompt that provides instructions or context to the model about the
#' task it should perform, or the persona it should adopt during the
#' conversation.
#' @param inferenceConfig Inference parameters to pass to the model.
#' [`converse`][bedrockruntime_converse] and
#' [`converse_stream`][bedrockruntime_converse_stream] support a base set
#' of inference parameters. If you need to pass additional parameters that
#' the model supports, use the `additionalModelRequestFields` request
#' field.
#' @param toolConfig Configuration information for the tools that the model can use when
#' generating a response.
#'
#' For information about models that support streaming tool use, see
#' [Supported models and model
#' features](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features).
#' @param guardrailConfig Configuration information for a guardrail that you want to use in the
#' request. If you include `guardContent` blocks in the `content` field in
#' the `messages` field, the guardrail operates only on those messages. If
#' you include no `guardContent` blocks, the guardrail operates on all
#' messages in the request body and in any included prompt resource.
#' @param additionalModelRequestFields Additional inference parameters that the model supports, beyond the base
#' set of inference parameters that [`converse`][bedrockruntime_converse]
#' and [`converse_stream`][bedrockruntime_converse_stream] support in the
#' `inferenceConfig` field. For more information, see [Model
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' @param promptVariables Contains a map of variables in a prompt from Prompt management to
#' objects containing the values to fill in for them when running model
#' invocation. This field is ignored if you don't specify a prompt resource
#' in the `modelId` field.
#' @param additionalModelResponseFieldPaths Additional model parameters field paths to return in the response.
#' [`converse`][bedrockruntime_converse] and
#' [`converse_stream`][bedrockruntime_converse_stream] return the requested
#' fields as a JSON Pointer object in the `additionalModelResponseFields`
#' field. The following is example JSON for
#' `additionalModelResponseFieldPaths`.
#'
#' `[ "/stop_sequence" ]`
#'
#' For information about the JSON Pointer syntax, see the [Internet
#' Engineering Task Force
#' (IETF)](https://datatracker.ietf.org/doc/html/rfc6901) documentation.
#'
#' [`converse`][bedrockruntime_converse] and
#' [`converse_stream`][bedrockruntime_converse_stream] reject an empty JSON
#' Pointer or incorrectly structured JSON Pointer with a `400` error code.
#' if the JSON Pointer is valid, but the requested field is not in the
#' model response, it is ignored by [`converse`][bedrockruntime_converse].
#' @param requestMetadata Key-value pairs that you can use to filter invocation logs.
#' @param performanceConfig Model performance settings for the request.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_converse_stream
bedrockruntime_converse_stream <- function(modelId, messages = NULL, system = NULL, inferenceConfig = NULL, toolConfig = NULL, guardrailConfig = NULL, additionalModelRequestFields = NULL, promptVariables = NULL, additionalModelResponseFieldPaths = NULL, requestMetadata = NULL, performanceConfig = NULL) {
op <- new_operation(
name = "ConverseStream",
http_method = "POST",
http_path = "/model/{modelId}/converse-stream",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockruntime$converse_stream_input(modelId = modelId, messages = messages, system = system, inferenceConfig = inferenceConfig, toolConfig = toolConfig, guardrailConfig = guardrailConfig, additionalModelRequestFields = additionalModelRequestFields, promptVariables = promptVariables, additionalModelResponseFieldPaths = additionalModelResponseFieldPaths, requestMetadata = requestMetadata, performanceConfig = performanceConfig)
output <- .bedrockruntime$converse_stream_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$converse_stream <- bedrockruntime_converse_stream
#' Retrieve information about an asynchronous invocation
#'
#' @description
#' Retrieve information about an asynchronous invocation.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_get_async_invoke/](https://www.paws-r-sdk.com/docs/bedrockruntime_get_async_invoke/) for full documentation.
#'
#' @param invocationArn [required] The invocation's ARN.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_get_async_invoke
bedrockruntime_get_async_invoke <- function(invocationArn) {
op <- new_operation(
name = "GetAsyncInvoke",
http_method = "GET",
http_path = "/async-invoke/{invocationArn}",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockruntime$get_async_invoke_input(invocationArn = invocationArn)
output <- .bedrockruntime$get_async_invoke_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$get_async_invoke <- bedrockruntime_get_async_invoke
#' Invokes the specified Amazon Bedrock model to run inference using the
#' prompt and inference parameters provided in the request body
#'
#' @description
#' Invokes the specified Amazon Bedrock model to run inference using the prompt and inference parameters provided in the request body. You use model inference to generate text, images, and embeddings.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model/](https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model/) for full documentation.
#'
#' @param body The prompt and inference parameters in the format specified in the
#' `contentType` in the header. You must provide the body in JSON format.
#' To see the format and content of the request and response bodies for
#' different models, refer to [Inference
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' For more information, see [Run
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference.html)
#' in the Bedrock User Guide.
#' @param contentType The MIME type of the input data in the request. You must specify
#' `application/json`.
#' @param accept The desired MIME type of the inference body in the response. The default
#' value is `application/json`.
#' @param modelId [required] The unique identifier of the model to invoke to run inference.
#'
#' The `modelId` to provide depends on the type of model or throughput that
#' you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an inference profile, specify the inference profile ID or
#' its ARN. For a list of inference profile IDs, see [Supported Regions
#' and models for cross-region
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an [imported
#' model](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html),
#' specify the ARN of the imported model. You can get the model ARN
#' from a successful call to
#' [CreateModelImportJob](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html)
#' or from the Imported models page in the Amazon Bedrock console.
#' @param trace Specifies whether to enable or disable the Bedrock trace. If enabled,
#' you can see the full Bedrock trace.
#' @param guardrailIdentifier The unique identifier of the guardrail that you want to use. If you
#' don't provide a value, no guardrail is applied to the invocation.
#'
#' An error will be thrown in the following situations.
#'
#' - You don't provide a guardrail identifier but you specify the
#' `amazon-bedrock-guardrailConfig` field in the request body.
#'
#' - You enable the guardrail but the `contentType` isn't
#' `application/json`.
#'
#' - You provide a guardrail identifier, but `guardrailVersion` isn't
#' specified.
#' @param guardrailVersion The version number for the guardrail. The value can also be `DRAFT`.
#' @param performanceConfigLatency Model performance settings for the request.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_invoke_model
bedrockruntime_invoke_model <- function(body = NULL, contentType = NULL, accept = NULL, modelId, trace = NULL, guardrailIdentifier = NULL, guardrailVersion = NULL, performanceConfigLatency = NULL) {
op <- new_operation(
name = "InvokeModel",
http_method = "POST",
http_path = "/model/{modelId}/invoke",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockruntime$invoke_model_input(body = body, contentType = contentType, accept = accept, modelId = modelId, trace = trace, guardrailIdentifier = guardrailIdentifier, guardrailVersion = guardrailVersion, performanceConfigLatency = performanceConfigLatency)
output <- .bedrockruntime$invoke_model_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$invoke_model <- bedrockruntime_invoke_model
#' Invoke the specified Amazon Bedrock model to run inference using the
#' prompt and inference parameters provided in the request body
#'
#' @description
#' Invoke the specified Amazon Bedrock model to run inference using the prompt and inference parameters provided in the request body. The response is returned in a stream.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model_with_response_stream/](https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model_with_response_stream/) for full documentation.
#'
#' @param body The prompt and inference parameters in the format specified in the
#' `contentType` in the header. You must provide the body in JSON format.
#' To see the format and content of the request and response bodies for
#' different models, refer to [Inference
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' For more information, see [Run
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference.html)
#' in the Bedrock User Guide.
#' @param contentType The MIME type of the input data in the request. You must specify
#' `application/json`.
#' @param accept The desired MIME type of the inference body in the response. The default
#' value is `application/json`.
#' @param modelId [required] The unique identifier of the model to invoke to run inference.
#'
#' The `modelId` to provide depends on the type of model or throughput that
#' you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an inference profile, specify the inference profile ID or
#' its ARN. For a list of inference profile IDs, see [Supported Regions
#' and models for cross-region
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an [imported
#' model](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html),
#' specify the ARN of the imported model. You can get the model ARN
#' from a successful call to
#' [CreateModelImportJob](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html)
#' or from the Imported models page in the Amazon Bedrock console.
#' @param trace Specifies whether to enable or disable the Bedrock trace. If enabled,
#' you can see the full Bedrock trace.
#' @param guardrailIdentifier The unique identifier of the guardrail that you want to use. If you
#' don't provide a value, no guardrail is applied to the invocation.
#'
#' An error is thrown in the following situations.
#'
#' - You don't provide a guardrail identifier but you specify the
#' `amazon-bedrock-guardrailConfig` field in the request body.
#'
#' - You enable the guardrail but the `contentType` isn't
#' `application/json`.
#'
#' - You provide a guardrail identifier, but `guardrailVersion` isn't
#' specified.
#' @param guardrailVersion The version number for the guardrail. The value can also be `DRAFT`.
#' @param performanceConfigLatency Model performance settings for the request.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_invoke_model_with_response_stream
bedrockruntime_invoke_model_with_response_stream <- function(body = NULL, contentType = NULL, accept = NULL, modelId, trace = NULL, guardrailIdentifier = NULL, guardrailVersion = NULL, performanceConfigLatency = NULL) {
op <- new_operation(
name = "InvokeModelWithResponseStream",
http_method = "POST",
http_path = "/model/{modelId}/invoke-with-response-stream",
host_prefix = "",
paginator = list(),
stream_api = TRUE
)
input <- .bedrockruntime$invoke_model_with_response_stream_input(body = body, contentType = contentType, accept = accept, modelId = modelId, trace = trace, guardrailIdentifier = guardrailIdentifier, guardrailVersion = guardrailVersion, performanceConfigLatency = performanceConfigLatency)
output <- .bedrockruntime$invoke_model_with_response_stream_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$invoke_model_with_response_stream <- bedrockruntime_invoke_model_with_response_stream
#' Lists asynchronous invocations
#'
#' @description
#' Lists asynchronous invocations.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_list_async_invokes/](https://www.paws-r-sdk.com/docs/bedrockruntime_list_async_invokes/) for full documentation.
#'
#' @param submitTimeAfter Include invocations submitted after this time.
#' @param submitTimeBefore Include invocations submitted before this time.
#' @param statusEquals Filter invocations by status.
#' @param maxResults The maximum number of invocations to return in one page of results.
#' @param nextToken Specify the pagination token from a previous request to retrieve the
#' next page of results.
#' @param sortBy How to sort the response.
#' @param sortOrder The sorting order for the response.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_list_async_invokes
bedrockruntime_list_async_invokes <- function(submitTimeAfter = NULL, submitTimeBefore = NULL, statusEquals = NULL, maxResults = NULL, nextToken = NULL, sortBy = NULL, sortOrder = NULL) {
op <- new_operation(
name = "ListAsyncInvokes",
http_method = "GET",
http_path = "/async-invoke",
host_prefix = "",
paginator = list(input_token = "nextToken", output_token = "nextToken", limit_key = "maxResults", result_key = "asyncInvokeSummaries"),
stream_api = FALSE
)
input <- .bedrockruntime$list_async_invokes_input(submitTimeAfter = submitTimeAfter, submitTimeBefore = submitTimeBefore, statusEquals = statusEquals, maxResults = maxResults, nextToken = nextToken, sortBy = sortBy, sortOrder = sortOrder)
output <- .bedrockruntime$list_async_invokes_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$list_async_invokes <- bedrockruntime_list_async_invokes
#' Starts an asynchronous invocation
#'
#' @description
#' Starts an asynchronous invocation.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_start_async_invoke/](https://www.paws-r-sdk.com/docs/bedrockruntime_start_async_invoke/) for full documentation.
#'
#' @param clientRequestToken Specify idempotency token to ensure that requests are not duplicated.
#' @param modelId [required] The model to invoke.
#' @param modelInput [required] Input to send to the model.
#' @param outputDataConfig [required] Where to store the output.
#' @param tags Tags to apply to the invocation.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_start_async_invoke
bedrockruntime_start_async_invoke <- function(clientRequestToken = NULL, modelId, modelInput, outputDataConfig, tags = NULL) {
op <- new_operation(
name = "StartAsyncInvoke",
http_method = "POST",
http_path = "/async-invoke",
host_prefix = "",
paginator = list(),
stream_api = FALSE
)
input <- .bedrockruntime$start_async_invoke_input(clientRequestToken = clientRequestToken, modelId = modelId, modelInput = modelInput, outputDataConfig = outputDataConfig, tags = tags)
output <- .bedrockruntime$start_async_invoke_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$start_async_invoke <- bedrockruntime_start_async_invoke
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.