Nothing
# This file is generated by make.paws. Please do not edit here.
#' @importFrom paws.common get_config new_operation new_request send_request
#' @include bedrockruntime_service.R
NULL
#' The action to apply a guardrail
#'
#' @description
#' The action to apply a guardrail.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_apply_guardrail/](https://www.paws-r-sdk.com/docs/bedrockruntime_apply_guardrail/) for full documentation.
#'
#' @param guardrailIdentifier [required] The guardrail identifier used in the request to apply the guardrail.
#' @param guardrailVersion [required] The guardrail version used in the request to apply the guardrail.
#' @param source [required] The source of data used in the request to apply the guardrail.
#' @param content [required] The content details used in the request to apply the guardrail.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_apply_guardrail
bedrockruntime_apply_guardrail <- function(guardrailIdentifier, guardrailVersion, source, content) {
op <- new_operation(
name = "ApplyGuardrail",
http_method = "POST",
http_path = "/guardrail/{guardrailIdentifier}/version/{guardrailVersion}/apply",
host_prefix = "",
paginator = list()
)
input <- .bedrockruntime$apply_guardrail_input(guardrailIdentifier = guardrailIdentifier, guardrailVersion = guardrailVersion, source = source, content = content)
output <- .bedrockruntime$apply_guardrail_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$apply_guardrail <- bedrockruntime_apply_guardrail
#' Sends messages to the specified Amazon Bedrock model
#'
#' @description
#' Sends messages to the specified Amazon Bedrock model. [`converse`][bedrockruntime_converse] provides a consistent interface that works with all models that support messages. This allows you to write code once and use it with different models. If a model has unique inference parameters, you can also pass those unique parameters to the model.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_converse/](https://www.paws-r-sdk.com/docs/bedrockruntime_converse/) for full documentation.
#'
#' @param modelId [required] The identifier for the model that you want to call.
#'
#' The `modelId` to provide depends on the type of model or throughput that
#' you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an inference profile, specify the inference profile ID or
#' its ARN. For a list of inference profile IDs, see [Supported Regions
#' and models for cross-region
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' The Converse API doesn't support [imported
#' models](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html).
#' @param messages [required] The messages that you want to send to the model.
#' @param system A system prompt to pass to the model.
#' @param inferenceConfig Inference parameters to pass to the model.
#' [`converse`][bedrockruntime_converse] supports a base set of inference
#' parameters. If you need to pass additional parameters that the model
#' supports, use the `additionalModelRequestFields` request field.
#' @param toolConfig Configuration information for the tools that the model can use when
#' generating a response.
#'
#' This field is only supported by Anthropic Claude 3, Cohere Command R,
#' Cohere Command R+, and Mistral Large models.
#' @param guardrailConfig Configuration information for a guardrail that you want to use in the
#' request.
#' @param additionalModelRequestFields Additional inference parameters that the model supports, beyond the base
#' set of inference parameters that [`converse`][bedrockruntime_converse]
#' supports in the `inferenceConfig` field. For more information, see
#' [Model
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' @param additionalModelResponseFieldPaths Additional model parameters field paths to return in the response.
#' [`converse`][bedrockruntime_converse] returns the requested fields as a
#' JSON Pointer object in the `additionalModelResponseFields` field. The
#' following is example JSON for `additionalModelResponseFieldPaths`.
#'
#' `[ "/stop_sequence" ]`
#'
#' For information about the JSON Pointer syntax, see the [Internet
#' Engineering Task Force
#' (IETF)](https://datatracker.ietf.org/doc/html/rfc6901) documentation.
#'
#' [`converse`][bedrockruntime_converse] rejects an empty JSON Pointer or
#' incorrectly structured JSON Pointer with a `400` error code. if the JSON
#' Pointer is valid, but the requested field is not in the model response,
#' it is ignored by [`converse`][bedrockruntime_converse].
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_converse
bedrockruntime_converse <- function(modelId, messages, system = NULL, inferenceConfig = NULL, toolConfig = NULL, guardrailConfig = NULL, additionalModelRequestFields = NULL, additionalModelResponseFieldPaths = NULL) {
op <- new_operation(
name = "Converse",
http_method = "POST",
http_path = "/model/{modelId}/converse",
host_prefix = "",
paginator = list()
)
input <- .bedrockruntime$converse_input(modelId = modelId, messages = messages, system = system, inferenceConfig = inferenceConfig, toolConfig = toolConfig, guardrailConfig = guardrailConfig, additionalModelRequestFields = additionalModelRequestFields, additionalModelResponseFieldPaths = additionalModelResponseFieldPaths)
output <- .bedrockruntime$converse_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$converse <- bedrockruntime_converse
#' Sends messages to the specified Amazon Bedrock model and returns the
#' response in a stream
#'
#' @description
#' Sends messages to the specified Amazon Bedrock model and returns the response in a stream. [`converse_stream`][bedrockruntime_converse_stream] provides a consistent API that works with all Amazon Bedrock models that support messages. This allows you to write code once and use it with different models. Should a model have unique inference parameters, you can also pass those unique parameters to the model.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_converse_stream/](https://www.paws-r-sdk.com/docs/bedrockruntime_converse_stream/) for full documentation.
#'
#' @param modelId [required] The ID for the model.
#'
#' The `modelId` to provide depends on the type of model or throughput that
#' you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an inference profile, specify the inference profile ID or
#' its ARN. For a list of inference profile IDs, see [Supported Regions
#' and models for cross-region
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference-support.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' The Converse API doesn't support [imported
#' models](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html).
#' @param messages [required] The messages that you want to send to the model.
#' @param system A system prompt to send to the model.
#' @param inferenceConfig Inference parameters to pass to the model.
#' [`converse_stream`][bedrockruntime_converse_stream] supports a base set
#' of inference parameters. If you need to pass additional parameters that
#' the model supports, use the `additionalModelRequestFields` request
#' field.
#' @param toolConfig Configuration information for the tools that the model can use when
#' generating a response.
#'
#' This field is only supported by Anthropic Claude 3 models.
#' @param guardrailConfig Configuration information for a guardrail that you want to use in the
#' request.
#' @param additionalModelRequestFields Additional inference parameters that the model supports, beyond the base
#' set of inference parameters that
#' [`converse_stream`][bedrockruntime_converse_stream] supports in the
#' `inferenceConfig` field.
#' @param additionalModelResponseFieldPaths Additional model parameters field paths to return in the response.
#' [`converse_stream`][bedrockruntime_converse_stream] returns the
#' requested fields as a JSON Pointer object in the
#' `additionalModelResponseFields` field. The following is example JSON for
#' `additionalModelResponseFieldPaths`.
#'
#' `[ "/stop_sequence" ]`
#'
#' For information about the JSON Pointer syntax, see the [Internet
#' Engineering Task Force
#' (IETF)](https://datatracker.ietf.org/doc/html/rfc6901) documentation.
#'
#' [`converse_stream`][bedrockruntime_converse_stream] rejects an empty
#' JSON Pointer or incorrectly structured JSON Pointer with a `400` error
#' code. if the JSON Pointer is valid, but the requested field is not in
#' the model response, it is ignored by
#' [`converse_stream`][bedrockruntime_converse_stream].
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_converse_stream
bedrockruntime_converse_stream <- function(modelId, messages, system = NULL, inferenceConfig = NULL, toolConfig = NULL, guardrailConfig = NULL, additionalModelRequestFields = NULL, additionalModelResponseFieldPaths = NULL) {
op <- new_operation(
name = "ConverseStream",
http_method = "POST",
http_path = "/model/{modelId}/converse-stream",
host_prefix = "",
paginator = list()
)
input <- .bedrockruntime$converse_stream_input(modelId = modelId, messages = messages, system = system, inferenceConfig = inferenceConfig, toolConfig = toolConfig, guardrailConfig = guardrailConfig, additionalModelRequestFields = additionalModelRequestFields, additionalModelResponseFieldPaths = additionalModelResponseFieldPaths)
output <- .bedrockruntime$converse_stream_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$converse_stream <- bedrockruntime_converse_stream
#' Invokes the specified Amazon Bedrock model to run inference using the
#' prompt and inference parameters provided in the request body
#'
#' @description
#' Invokes the specified Amazon Bedrock model to run inference using the prompt and inference parameters provided in the request body. You use model inference to generate text, images, and embeddings.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model/](https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model/) for full documentation.
#'
#' @param body [required] The prompt and inference parameters in the format specified in the
#' `contentType` in the header. You must provide the body in JSON format.
#' To see the format and content of the request and response bodies for
#' different models, refer to [Inference
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' For more information, see [Run
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference.html)
#' in the Bedrock User Guide.
#' @param contentType The MIME type of the input data in the request. You must specify
#' `application/json`.
#' @param accept The desired MIME type of the inference body in the response. The default
#' value is `application/json`.
#' @param modelId [required] The unique identifier of the model to invoke to run inference.
#'
#' The `modelId` to provide depends on the type of model that you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an [imported
#' model](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html),
#' specify the ARN of the imported model. You can get the model ARN
#' from a successful call to
#' [CreateModelImportJob](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html)
#' or from the Imported models page in the Amazon Bedrock console.
#' @param trace Specifies whether to enable or disable the Bedrock trace. If enabled,
#' you can see the full Bedrock trace.
#' @param guardrailIdentifier The unique identifier of the guardrail that you want to use. If you
#' don't provide a value, no guardrail is applied to the invocation.
#'
#' An error will be thrown in the following situations.
#'
#' - You don't provide a guardrail identifier but you specify the
#' `amazon-bedrock-guardrailConfig` field in the request body.
#'
#' - You enable the guardrail but the `contentType` isn't
#' `application/json`.
#'
#' - You provide a guardrail identifier, but `guardrailVersion` isn't
#' specified.
#' @param guardrailVersion The version number for the guardrail. The value can also be `DRAFT`.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_invoke_model
bedrockruntime_invoke_model <- function(body, contentType = NULL, accept = NULL, modelId, trace = NULL, guardrailIdentifier = NULL, guardrailVersion = NULL) {
op <- new_operation(
name = "InvokeModel",
http_method = "POST",
http_path = "/model/{modelId}/invoke",
host_prefix = "",
paginator = list()
)
input <- .bedrockruntime$invoke_model_input(body = body, contentType = contentType, accept = accept, modelId = modelId, trace = trace, guardrailIdentifier = guardrailIdentifier, guardrailVersion = guardrailVersion)
output <- .bedrockruntime$invoke_model_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$invoke_model <- bedrockruntime_invoke_model
#' Invoke the specified Amazon Bedrock model to run inference using the
#' prompt and inference parameters provided in the request body
#'
#' @description
#' Invoke the specified Amazon Bedrock model to run inference using the prompt and inference parameters provided in the request body. The response is returned in a stream.
#'
#' See [https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model_with_response_stream/](https://www.paws-r-sdk.com/docs/bedrockruntime_invoke_model_with_response_stream/) for full documentation.
#'
#' @param body [required] The prompt and inference parameters in the format specified in the
#' `contentType` in the header. You must provide the body in JSON format.
#' To see the format and content of the request and response bodies for
#' different models, refer to [Inference
#' parameters](https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html).
#' For more information, see [Run
#' inference](https://docs.aws.amazon.com/bedrock/latest/userguide/inference.html)
#' in the Bedrock User Guide.
#' @param contentType The MIME type of the input data in the request. You must specify
#' `application/json`.
#' @param accept The desired MIME type of the inference body in the response. The default
#' value is `application/json`.
#' @param modelId [required] The unique identifier of the model to invoke to run inference.
#'
#' The `modelId` to provide depends on the type of model that you use:
#'
#' - If you use a base model, specify the model ID or its ARN. For a list
#' of model IDs for base models, see [Amazon Bedrock base model IDs
#' (on-demand
#' throughput)](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html#model-ids-arns)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a provisioned model, specify the ARN of the Provisioned
#' Throughput. For more information, see [Run inference using a
#' Provisioned
#' Throughput](https://docs.aws.amazon.com/bedrock/latest/userguide/prov-thru-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use a custom model, first purchase Provisioned Throughput for
#' it. Then specify the ARN of the resulting provisioned model. For
#' more information, see [Use a custom model in Amazon
#' Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-use.html)
#' in the Amazon Bedrock User Guide.
#'
#' - If you use an [imported
#' model](https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-import-model.html),
#' specify the ARN of the imported model. You can get the model ARN
#' from a successful call to
#' [CreateModelImportJob](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelImportJob.html)
#' or from the Imported models page in the Amazon Bedrock console.
#' @param trace Specifies whether to enable or disable the Bedrock trace. If enabled,
#' you can see the full Bedrock trace.
#' @param guardrailIdentifier The unique identifier of the guardrail that you want to use. If you
#' don't provide a value, no guardrail is applied to the invocation.
#'
#' An error is thrown in the following situations.
#'
#' - You don't provide a guardrail identifier but you specify the
#' `amazon-bedrock-guardrailConfig` field in the request body.
#'
#' - You enable the guardrail but the `contentType` isn't
#' `application/json`.
#'
#' - You provide a guardrail identifier, but `guardrailVersion` isn't
#' specified.
#' @param guardrailVersion The version number for the guardrail. The value can also be `DRAFT`.
#'
#' @keywords internal
#'
#' @rdname bedrockruntime_invoke_model_with_response_stream
bedrockruntime_invoke_model_with_response_stream <- function(body, contentType = NULL, accept = NULL, modelId, trace = NULL, guardrailIdentifier = NULL, guardrailVersion = NULL) {
op <- new_operation(
name = "InvokeModelWithResponseStream",
http_method = "POST",
http_path = "/model/{modelId}/invoke-with-response-stream",
host_prefix = "",
paginator = list()
)
input <- .bedrockruntime$invoke_model_with_response_stream_input(body = body, contentType = contentType, accept = accept, modelId = modelId, trace = trace, guardrailIdentifier = guardrailIdentifier, guardrailVersion = guardrailVersion)
output <- .bedrockruntime$invoke_model_with_response_stream_output()
config <- get_config()
svc <- .bedrockruntime$service(config, op)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.bedrockruntime$operations$invoke_model_with_response_stream <- bedrockruntime_invoke_model_with_response_stream
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.