Description Usage Arguments Details Value References Examples
Uses the C_T values and a reference group to calculate the delta C_T model to estimate the relative fold change of a gene between groups
1 2 3 4 5 6 7 8 |
df |
A data.frame of C_T values with genes in the columns and samples in rows rows |
group_var |
A character vector of a grouping variable. The length of this variable should equal the number of rows of df |
reference_group |
A character string of the control group in group_var |
mode |
A character string of; 'separate_tube' (default) or 'same_tube'. This is to indicate whether the different genes were run in separate or the same PCR tube |
plot |
A logical (default is FALSE) |
... |
Arguments passed to customize plot |
This method is a variation of the double delta C_T model,
pcr_ddct
. It can be used to calculate the fold change
of in one sample relative to the others. For example, it can be used to
compare and choosing a control/reference genes.
A data.frame of 7 columns
group The unique entries in group_var
gene The column names of df
calibrated The average C_T value of target genes after subtracting that of the reference_group
fold_change The fold change of genes relative to a reference_group
error The standard deviation of the fold_change
lower The lower interval of the fold_change
upper The upper interval of the fold_change
When plot
is TRUE, returns a bar graph of the fold change of
the genes in the column and the groups in the column group. Error bars are
drawn using the columns lower and upper. When more one gene are plotted the
default in dodge bars. When the argument facet is TRUE a separate panel is
drawn for each gene.
Livak, Kenneth J, and Thomas D Schmittgen. 2001. “Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the Double Delta CT Method.” Methods 25 (4). ELSEVIER. doi:10.1006/meth.2001.1262.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | # locate and read file
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- read.csv(fl)
# make a data.frame of two identical columns
pcr_hk <- data.frame(
GAPDH1 = ct1$GAPDH,
GAPDH2 = ct1$GAPDH
)
# add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)
# calculate caliberation
pcr_dct(pcr_hk,
group_var = group_var,
reference_group = 'brain')
# returns a plot
pcr_dct(pcr_hk,
group_var = group_var,
reference_group = 'brain',
plot = TRUE)
# returns a plot with facets
pcr_dct(pcr_hk,
group_var = group_var,
reference_group = 'brain',
plot = TRUE,
facet = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.