Nothing
#' @description
#' Internal function for calculating the pareto distribution of the upper boundary of a uniform
#' distribution represented by single value traits.
#' @param s1 A vector of numerics drawn from a uniform distribution.
#' @examples
#' set.seed(123)
#' s1 = stats::runif(10, -1, 10)
#' out <- .conj_bivariate_uniform_sv(
#' s1 = s1, cred.int.level = 0.95
#' )
#' lapply(out, head)
#'
#' @keywords internal
#' @noRd
.conj_bivariate_uniform_sv <- function(s1 = NULL, priors = NULL,
support = NULL, cred.int.level = NULL,
calculatingSupport = FALSE) {
out <- list()
#* `make default prior if none provided`
#* conjugate prior needs r1, r2, and alpha
#* which are locations and a shared shape (scale) paramter
if (is.null(priors)) {
priors <- list(location_l = 1, location_u = 2, scale = 1)
}
#* `Update bivariate pareto prior with sufficient statistics`
location_u_prime <- max(c(s1, priors$location_u[1]))
location_l_prime <- min(c(s1, priors$location_l[1]))
scale_prime <- priors$scale[1] + length(s1)
#* `Define bivariate support if it is missing`
#* `this will require some thought since there are two directions.`
#* first problem is that qpareto requires the parameters to be > 0,
#* but the lower boundary can be negative, or could be something like 1
#* with a tail that becomes negative. I guess changing the center is the
#* way to account for those potential problems.
if (is.null(support)) {
(quantiles_u <- qpareto(c(0.0001, 0.9999), scale_prime, abs(location_u_prime)))
(quantiles_l <- qpareto(c(0.0001, 0.9999), scale_prime, abs(location_l_prime)))
support_l <- seq(quantiles_l[1], quantiles_l[2], length.out = 10000)
support_u <- seq(quantiles_u[1], quantiles_u[2], length.out = 10000)
if (location_l_prime < 0) {
quantiles_l <- -1 * rev(quantiles_l)
support_l <- seq(quantiles_l[1], quantiles_l[2], length.out = 10000)
}
if (location_u_prime < 0) {
quantiles_u <- -1 * rev(quantiles_u)
support_u <- seq(quantiles_u[1], quantiles_u[2], length.out = 10000)
}
if (calculatingSupport) {
return(list("A" = quantiles_l, "B" = quantiles_u))
}
} else {
support_l <- support$A
support_u <- support$B
}
#* `Make Posterior Draws`
out$posteriorDraws <- .conj_cond_inv_rpareto(
10000, location_l_prime, location_u_prime,
scale_prime
)
#* `posterior`
#* this also needs to handle the possibility of negative locations
if (location_l_prime < 0) {
dens_l <- extraDistr::dpareto(-1 * support_l, scale_prime, abs(location_l_prime))
} else {
dens_l <- extraDistr::dpareto(support_l, scale_prime, location_l_prime)
}
if (location_u_prime < 0) {
dens_u <- extraDistr::dpareto(-1 * support_u, scale_prime, abs(location_u_prime))
} else {
dens_u <- extraDistr::dpareto(support_u, scale_prime, location_u_prime)
}
pdf_l <- dens_l / sum(dens_l)
pdf_u <- dens_u / sum(dens_u)
out$pdf <- list("A" = pdf_l, "B" = pdf_u)
hde_l <- location_l_prime
hde_u <- location_u_prime
if (location_l_prime < 0) {
hdi_l <- -1 * rev(extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, abs(location_l_prime)
))
} else {
hdi_l <- extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, location_l_prime
)
}
if (location_u_prime < 0) {
hdi_u <- -1 * rev(extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, abs(location_u_prime)
))
} else {
hdi_u <- extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, location_u_prime
)
}
#* `Store summary`
out$summary <- data.frame(
HDE_1 = c(hde_l, hde_u),
HDI_1_low = c(hdi_l[1], hdi_u[1]),
HDI_1_high = c(hdi_l[2], hdi_u[2]),
param = c("A", "B")
)
out$posterior <- list(
"scale" = scale_prime, "location_l" = location_l_prime,
"location_u" = location_u_prime
)
out$prior <- priors
#* `save modified parameter list for downstream functions`
out$plot_list <- list(
"range" = list(range(support_l), range(support_u)),
"ddist_fun" = list("extraDistr::dpareto", "extraDistr::dpareto"),
"parameters" = list(
list("a" = scale_prime, "b" = location_l_prime),
list("a" = scale_prime, "b" = location_u_prime)
)
)
#* `save s1 data for plotting`
out$plot_df <- data.frame(
"range" = c(support_l, support_u),
"prob" = c(pdf_l, pdf_u),
"param" = rep(c("A", "B"), each = length(support_u)),
"sample" = rep("Sample 1", 2 * length(support_u))
)
return(out)
}
#' @description
#' Internal function for calculating conditional inverse sampling from bivariate pareto
#' @examples
#' .conj_cond_inv_rpareto(10, 1, 2, 10)
#'
#' @keywords internal
#' @noRd
.conj_cond_inv_rpareto <- function(n, r1, r2, scale) {
u <- stats::runif(n, min = 0, max = 1)
# pareto quantile function
x2 <- r2 / (u^(1 / scale))
u <- stats::runif(n, min = 0, max = 1)
# this is a displaced origin pareto
# also using quantile function of the marginal x1 | x2
x1 <- r1 + (r1 / r2) * x2 * (1 / (u^(1 / (scale + 1))) - 1)
return(cbind.data.frame("A" = x1, "B" = x2))
}
#' @description
#' Internal function for calculating the pareto distribution of the upper boundary of a uniform
#' distribution represented by multi value traits.
#' @param s1 A vector of numerics drawn from a uniform distribution.
#' @examples
#' s1 <- mvSim(
#' dists = list(runif = list(min = 15, max = 150)),
#' n_samples = 10,
#' counts = 1000,
#' min_bin = 1,
#' max_bin = 180,
#' wide = TRUE
#' )
#' out <- .conj_bivariate_uniform_mv(
#' s1 = s1[, -1], cred.int.level = 0.95,
#' priors = list(location_l = 50, location_u = 100, scale = 1)
#' )
#' lapply(out, head)
#' @keywords internal
#' @noRd
.conj_bivariate_uniform_mv <- function(s1 = NULL, priors = NULL,
support = NULL, cred.int.level = NULL,
calculatingSupport = FALSE) {
out <- list()
#* `make default prior if none provided`
#* conjugate prior needs r1, r2, and alpha
#* which are locations and a shared shape (scale) paramter
if (is.null(priors)) {
priors <- list(location_l = 1, location_u = 2, scale = 1)
}
#* `Calculate Sufficient Statistics`
#* `N observations`
n_obs <- nrow(s1)
#* `Max non-zero bin`
max_obs <- max(unlist(lapply(seq_len(n_obs), function(i) {
col <- utils::tail(colnames(s1)[which(s1[i, ] > 0)], 1)
return(as.numeric(gsub("[a-zA-Z]_*", "", col)))
})), na.rm = TRUE)
#* `Min non-zero bin`
min_obs <- min(unlist(lapply(seq_len(n_obs), function(i) {
col <- colnames(s1)[which(s1[i, ] > 0)][1]
return(as.numeric(gsub("[a-zA-Z]_*", "", col)))
})), na.rm = TRUE)
#* `Update bivariate pareto prior with sufficient statistics`
location_u_prime <- max(c(max_obs, priors$location_u[1]))
location_l_prime <- min(c(min_obs, priors$location_l[1]))
scale_prime <- priors$scale[1] + n_obs
#* `Define bivariate support if it is missing`
#* `this will require some thought since there are two directions.`
#* first problem is that qpareto requires the parameters to be > 0,
#* but the lower boundary can be negative, or could be something like 1
#* with a tail that becomes negative. I guess changing the center is the
#* way to account for those potential problems.
if (is.null(support)) {
(quantiles_u <- qpareto(c(0.0001, 0.9999), scale_prime, abs(location_u_prime)))
(quantiles_l <- qpareto(c(0.0001, 0.9999), scale_prime, abs(location_l_prime)))
support_l <- seq(quantiles_l[1], quantiles_l[2], length.out = 10000)
support_u <- seq(quantiles_u[1], quantiles_u[2], length.out = 10000)
if (location_l_prime < 0) {
quantiles_l <- -1 * rev(quantiles_l)
support_l <- seq(quantiles_l[1], quantiles_l[2], length.out = 10000)
}
if (location_u_prime < 0) {
quantiles_u <- -1 * rev(quantiles_u)
support_u <- seq(quantiles_u[1], quantiles_u[2], length.out = 10000)
}
if (calculatingSupport) {
return(list("A" = quantiles_l, "B" = quantiles_u))
}
} else {
support_l <- support$A
support_u <- support$B
}
#* `Make Posterior Draws`
out$posteriorDraws <- .conj_cond_inv_rpareto(
10000, location_l_prime, location_u_prime,
scale_prime
)
#* `posterior`
#* this also needs to handle the possibility of negative locations
if (location_l_prime < 0) {
dens_l <- extraDistr::dpareto(-1 * support_l, scale_prime, abs(location_l_prime))
} else {
dens_l <- extraDistr::dpareto(support_l, scale_prime, location_l_prime)
}
if (location_u_prime < 0) {
dens_u <- extraDistr::dpareto(-1 * support_u, scale_prime, abs(location_u_prime))
} else {
dens_u <- extraDistr::dpareto(support_u, scale_prime, location_u_prime)
}
pdf_l <- dens_l / sum(dens_l)
pdf_u <- dens_u / sum(dens_u)
out$pdf <- list("A" = pdf_l, "B" = pdf_u)
hde_l <- location_l_prime
hde_u <- location_u_prime
if (location_l_prime < 0) {
hdi_l <- -1 * rev(extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, abs(location_l_prime)
))
} else {
hdi_l <- extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, location_l_prime
)
}
if (location_u_prime < 0) {
hdi_u <- -1 * rev(extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, abs(location_u_prime)
))
} else {
hdi_u <- extraDistr::qpareto(
c((1 - cred.int.level) / 2, (1 - ((1 - cred.int.level) / 2))),
scale_prime, location_u_prime
)
}
#* `Store summary`
out$summary <- data.frame(
HDE_1 = c(hde_l, hde_u),
HDI_1_low = c(hdi_l[1], hdi_u[1]),
HDI_1_high = c(hdi_l[2], hdi_u[2]),
param = c("A", "B")
)
out$posterior <- list(
"scale" = scale_prime, "location_l" = location_l_prime,
"location_u" = location_u_prime
)
out$prior <- priors
#* `save s1 data for plotting`
out$plot_df <- data.frame(
"range" = c(support_l, support_u),
"prob" = c(pdf_l, pdf_u),
"param" = rep(c("A", "B"), each = length(support_u)),
"sample" = rep("Sample 1", 2 * length(support_u))
)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.