Nothing
#' Function to visualize common \code{nlme::nlme} growth models.
#'
#' Models fit using \link{growthSS} inputs by \link{fitGrowth}
#' (and similar models made through other means)
#' can be visualized easily using this function. This will generally be called by \code{growthPlot}.
#'
#' @param fit A model fit returned by \code{fitGrowth} with type="nlme".
#' @param form A formula similar to that in \code{growthSS} inputs (or the \code{pcvrForm} part of the
#' output) specifying the outcome, predictor, and grouping structure of the data as
#' \code{outcome ~ predictor|individual/group}
#' @param df A dataframe to use in plotting observed growth curves on top of the model.
#' This must be supplied for nlme models.
#' @param groups An optional set of groups to keep in the plot.
#' Defaults to NULL in which case all groups in the model are plotted.
#' @param timeRange An optional range of times to use. This can be used to view predictions for
#' future data if the available data has not reached some point (such as asymptotic size).
#' @param facetGroups logical, should groups be separated in facets? Defaults to TRUE.
#' @param groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
#' viridis colormaps are used in the order of virMaps.
#' @param virMaps order of viridis maps to use. Will be recycled to necessary length.
#' Defaults to "plasma", but will generally be informed by growthPlot's default.
#' @keywords growth-curve
#' @importFrom methods is
#' @import ggplot2
#' @importFrom stats predict update residuals
#' @importFrom nlme nlme nlme.formula
#' @examples
#'
#' simdf <- growthSim("logistic",
#' n = 10, t = 25,
#' params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))
#' )
#'
#' ss <- growthSS(
#' model = "logistic", form = y ~ time | id / group, sigma = "none",
#' df = simdf, start = NULL, type = "nlme"
#' )
#'
#' fit <- fitGrowth(ss)
#'
#' nlmePlot(fit, form = ss$pcvrForm, groups = NULL, df = ss$df, timeRange = NULL)
#' nlmePlot(fit, form = ss$pcvrForm, groups = "a", df = ss$df, timeRange = 1:10, groupFill = TRUE)
#'
#' @return Returns a ggplot showing an nlme model's credible
#' intervals and optionally the individual growth lines.
#'
#' @export
#'
nlmePlot <- function(fit, form, df = NULL, groups = NULL, timeRange = NULL, facetGroups = TRUE,
groupFill = FALSE, virMaps = c("plasma")) {
#* `get needed information from formula`
parsed_form <- .parsePcvrForm(form, df)
y <- parsed_form$y
x <- parsed_form$x
individual <- parsed_form$individual
if (individual == "dummyIndividual") {
individual <- NULL
}
group <- parsed_form$group
facetGroups <- .no_dummy_labels(group, facetGroups)
df <- parsed_form$data
df[[paste(group, collapse = ".")]] <- interaction(df[, group])
group <- paste(group, collapse = ".")
intVar <- paste0(group, individual)
#* `make new data if timerange is not NULL`
if (!is.null(timeRange)) {
new_data <- do.call(rbind, lapply(unique(df[["autocor"]]), function(g) {
return(stats::setNames(data.frame(g, timeRange), c(intVar, x)))
}))
new_data[[group]] <- gsub("[.].*", "", new_data[[intVar]])
new_data[[individual]] <- gsub(".*[.]", "", new_data[[intVar]])
df <- df[df[[x]] >= min(timeRange) & df[[x]] <= max(timeRange), ]
} else {
new_data <- df
}
preds <- new_data
preds$trendline <- round(predict(fit, preds), 4)
#* `filter by groups if groups != NULL`
#* has to happen after predictions to avoid nlme errors in model matrix
if (!is.null(groups)) {
preds <- preds[preds[[group]] %in% paste(groups, collapse = "."), ]
}
preds <- preds[!duplicated(preds$trendline), ]
preds <- .add_sigma_bounds(preds, fit, x, group)
#* `plot`
#* `facetGroups`
facet_layer <- NULL
if (facetGroups) {
facet_layer <- ggplot2::facet_wrap(stats::as.formula(paste0("~", group)))
}
#* `groupFill`
pal <- viridis::plasma(2, begin = 0.1, end = 0.9)
virList <- lapply(seq_along(unique(df[[group]])), function(i) {
return(pal)
})
if (groupFill) {
virList <- lapply(rep(virMaps, length.out = length(unique(df[[group]]))), function(pal) {
return(viridis::viridis(2, begin = 0.1, end = 0.9, option = pal))
})
}
#* `layer for individual lines if formula was complete`
individual_lines <- list()
if (!is.null(individual)) {
individual_lines <- ggplot2::geom_line(
data = df, ggplot2::aes(
x = .data[[x]], y = .data[[y]],
group = interaction(
.data[[individual]],
.data[[group]]
)
),
linewidth = 0.25, color = "gray40"
)
}
plot <- ggplot2::ggplot(preds, ggplot2::aes(x = .data[[x]], y = .data[["trendline"]])) +
facet_layer +
individual_lines +
ggplot2::labs(x = x, y = y) +
pcv_theme()
for (g in seq_along(unique(preds[[group]]))) {
iteration_group <- unique(preds[[group]])[g]
sub <- preds[preds[[group]] == iteration_group, ]
plot <- plot +
ggplot2::geom_ribbon(
data = sub, ggplot2::aes(
ymin = .data[["sigma_ymin"]],
ymax = .data[["sigma_ymax"]]
),
fill = virList[[g]][1], alpha = 0.5
) +
ggplot2::geom_line(data = sub, color = virList[[g]][2], linewidth = 0.75)
}
return(plot)
}
#' convenience function for calculating sigma upper and lower bounds
#' @keywords internal
#' @noRd
.add_sigma_bounds <- function(preds, fit, x, group) {
res <- do.call(rbind, lapply(unique(preds[[group]]), function(grp) {
varCoef <- as.numeric(fit$modelStruct$varStruct[grp])
sub <- preds[preds[[group]] == grp, ]
exes <- sub[[x]]
if (methods::is(fit$modelStruct$varStruct, "varPower")) {
out <- exes^(2 * varCoef)
} else if (methods::is(fit$modelStruct$varStruct, "varExp")) {
out <- exp(2 * varCoef * exes)
} else if (methods::is(fit$modelStruct$varStruct, "varIdent")) {
baseSigma <- fit$sigma
varSummary <- summary(fit$modelStruct$varStruct)
coefs <- data.frame(
x = 1 / unique(attr(varSummary, "weight")),
g = unique(attr(varSummary, "groups"))
)
out <- baseSigma * coefs[coefs$g == grp, "x"]
}
sub$sigma_ymax <- sub$trendline + 0.5 * out
sub$sigma_ymin <- sub$trendline - 0.5 * out
return(sub)
}))
return(res)
}
#' alias of nlmePlot for using lme models via class matching
#' @keywords internal
#' @noRd
lmePlot <- function(fit, form, df = NULL, groups = NULL, timeRange = NULL, facetGroups = TRUE,
groupFill = FALSE, virMaps = c("plasma")) {
p <- nlmePlot(fit, form, df, groups, timeRange, facetGroups, groupFill, virMaps)
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.