Nothing
#' Function to visualize common \code{quantreg::nlrq} growth models.
#'
#' Models fit using \link{growthSS} inputs by \link{fitGrowth}
#' (and similar models made through other means)
#' can be visualized easily using this function. This will generally be called by \code{growthPlot}.
#'
#' @param fit A model fit, or list of model fits, returned by \code{fitGrowth} with type="nlrq".
#' @param form A formula similar to that in \code{growthSS} inputs (or the \code{pcvrForm} part of the
#' output) specifying the outcome, predictor, and grouping structure of the data as
#' \code{outcome ~ predictor|individual/group}. If the individual and group are specified then the
#' observed growth lines are plotted.
#' @param df A dataframe to use in plotting observed growth curves on top of the model.
#' This must be supplied for nlrq models.
#' @param groups An optional set of groups to keep in the plot.
#' Defaults to NULL in which case all groups in the model are plotted.
#' @param timeRange An optional range of times to use. This can be used to view predictions for
#' future data if the available data has not reached some point (such as asymptotic size).
#' @param facetGroups logical, should groups be separated in facets? Defaults to TRUE.
#' @param groupFill logical, should groups have different colors? Defaults to FALSE.
#' If TRUE then viridis colormaps are used in the order of virMaps
#' @param virMaps order of viridis maps to use. Will be recycled to necessary length.
#' Defaults to "plasma", but will generally be informed by growthPlot's default.
#' @keywords growth-curve
#' @importFrom methods is
#' @import ggplot2
#' @importFrom stats setNames predict
#' @importFrom viridis plasma
#' @examples
#'
#' simdf <- growthSim("logistic",
#' n = 20, t = 25,
#' params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))
#' )
#' ss <- growthSS(
#' model = "logistic", form = y ~ time | id / group,
#' tau = c(0.5, 0.9), df = simdf, start = NULL, type = "nlrq"
#' )
#' fit <- fitGrowth(ss)
#' nlrqPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:20)
#' nlrqPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE, virMaps = c("plasma", "viridis"))
#'
#' ss <- growthSS(
#' model = "logistic", form = y ~ time,
#' tau = c(0.5, 0.9), df = simdf, start = NULL, type = "nlrq"
#' )
#' fit <- fitGrowth(ss)
#' nlrqPlot(fit, form = ss$pcvrForm, df = ss$df)
#'
#' @return Returns a ggplot showing an nlrq model's quantiles
#' and optionally the individual growth lines.
#'
#' @export
nlrqPlot <- function(fit, form, df = NULL, groups = NULL, timeRange = NULL,
facetGroups = TRUE, groupFill = FALSE, virMaps = c("plasma")) {
#* `get needed information from formula`
parsed_form <- .parsePcvrForm(form, df)
y <- parsed_form$y
x <- parsed_form$x
individual <- parsed_form$individual
if (individual == "dummyIndividual") {
individual <- NULL
}
group <- parsed_form$group
facetGroups <- .no_dummy_labels(group, facetGroups)
df <- parsed_form$data
#* `filter by groups if groups != NULL`
if (!is.null(groups)) {
keep_index_df <- Reduce(intersect, lapply(seq_along(groups), function(i) {
grp <- groups[i]
return(which(df[[group[i]]] %in% grp))
}))
df <- df[keep_index_df, ]
}
#* `make new data if timerange is not NULL`
if (!is.null(timeRange)) {
new_data <- do.call(
expand.grid,
append(
list(timeRange),
c(lapply(group, function(grp) {
return(unique(df[[grp]]))
}))
)
)
colnames(new_data) <- c(x, group)
df <- df[df[[x]] >= min(timeRange) & df[[x]] <= max(timeRange), ]
} else {
new_data <- df
}
#* `standardize fit class`
if (methods::is(fit, "nlrq")) {
fit <- list(fit)
names(fit) <- fit[[1]]$m$tau()
}
#* `add predictions`
preds <- do.call(cbind, lapply(fit, function(f) {
tau <- f$m$tau()
return(stats::setNames(data.frame(stats::predict(f, newdata = new_data)), paste0("Q_", tau)))
}))
predCols <- colnames(preds)
keep <- which(!duplicated(preds))
plotdf <- cbind(df, preds)
colnames(plotdf) <- c(colnames(df), colnames(preds))
plotdf <- plotdf[keep, ]
plotdf$group_interaction <- interaction(plotdf[, group])
#* `facetGroups`
facet_layer <- NULL
if (facetGroups) {
facet_layer <- ggplot2::facet_wrap(stats::as.formula(paste0("~", paste(group, collapse = "+"))))
}
#* `groupFill`
if (groupFill) {
virList <- lapply(
rep(virMaps, length.out = length(unique(interaction(df[, group])))),
function(pal) {
virpal_p1 <- viridis::viridis(ceiling(length(predCols) / 2),
direction = 1, end = 1, option = pal
)
virpal_p2 <- viridis::viridis(ceiling(length(predCols) / 2),
direction = -1, end = 1, option = pal
)[-1]
return(c(virpal_p1, virpal_p2))
}
)
} else {
virpal_p1 <- viridis::plasma(ceiling(length(predCols) / 2), direction = 1, end = 1)
virpal_p2 <- viridis::plasma(ceiling(length(predCols) / 2), direction = -1, end = 1)[-1]
virpal <- c(virpal_p1, virpal_p2)
virList <- lapply(seq_along(unique(interaction(df[, group]))), function(i) {
return(virpal)
})
}
#* `layer for individual lines if formula was complete`
if (!is.null(individual)) {
df$group_interaction <- interaction(df[, group])
individual_lines <- ggplot2::geom_line(
data = df, ggplot2::aes(
x = .data[[x]], y = .data[[y]],
group = interaction(
.data[[individual]],
.data[["group_interaction"]]
)
),
linewidth = 0.25, color = "gray40"
)
} else {
individual_lines <- list()
}
#* `plot`
plot <- ggplot(plotdf, ggplot2::aes(group = .data[["group_interaction"]])) +
facet_layer +
individual_lines +
labs(x = x, y = as.character(form)[2]) +
pcv_theme()
for (g in seq_along(unique(plotdf[["group_interaction"]]))) {
iteration_group <- unique(plotdf[["group_interaction"]])[g]
sub <- plotdf[plotdf[["group_interaction"]] == iteration_group, ]
plot <- plot +
lapply(seq_along(predCols), function(i) {
line_layer <- ggplot2::geom_line(
data = sub, ggplot2::aes(x = .data[[x]], y = .data[[predCols[i]]]),
color = virList[[g]][i], linewidth = 0.7
)
return(line_layer)
})
}
return(plot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.