Nothing
#' Function to visualize common \code{stats::nls} growth models.
#'
#' Models fit using \link{growthSS} inputs by \link{fitGrowth}
#' (and similar models made through other means) can be visualized easily using this function.
#' This will generally be called by \code{growthPlot}.
#'
#' @param fit A model fit returned by \code{fitGrowth} with type="nls".
#' @param form A formula similar to that in \code{growthSS} inputs (or the \code{pcvrForm}
#' part of the output) specifying the outcome, predictor, and grouping structure of the data as
#' \code{outcome ~ predictor|individual/group}.
#' If the individual and group are specified then the observed growth lines are plotted.
#' @param groups An optional set of groups to keep in the plot.
#' Defaults to NULL in which case all groups in the model are plotted.
#' @param df A dataframe to use in plotting observed growth curves on top of the model.
#' This must be supplied for nls models.
#' @param timeRange An optional range of times to use. This can be used to view predictions for
#' future data if the available data has not reached some point (such as asymptotic size).
#' @param facetGroups logical, should groups be separated in facets? Defaults to TRUE.
#' @param groupFill logical, should groups have different colors? Defaults to FALSE.
#' If TRUE then viridis colormaps are used in the order of virMaps
#' @param virMaps order of viridis maps to use. Will be recycled to necessary length.
#' Defaults to "plasma", but will generally be informed by growthPlot's default.
#' @keywords growth-curve
#' @importFrom methods is
#' @import ggplot2
#' @importFrom stats predict
#' @examples
#'
#'
#' simdf <- growthSim("logistic",
#' n = 20, t = 25,
#' params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))
#' )
#' ss <- growthSS(
#' model = "logistic", form = y ~ time | id / group,
#' df = simdf, start = NULL, type = "nls"
#' )
#' fit <- fitGrowth(ss)
#' nlsPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)
#' nlsPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:10)
#'
#' @return Returns a ggplot showing an nls model's predictions.
#'
#' @export
nlsPlot <- function(fit, form, df = NULL, groups = NULL, timeRange = NULL,
facetGroups = TRUE, groupFill = FALSE, virMaps = c("plasma")) {
#* `get needed information from formula`
parsed_form <- .parsePcvrForm(form, df)
#* `pick longitudinal or non-longitudinal helper`
if (!is.numeric(df[, parsed_form$x]) && !parsed_form$USEG && !parsed_form$USEID) {
p <- .nlsStaticPlot(
fit, form, df, groups, timeRange,
facetGroups, groupFill, virMaps, parsed_form
)
return(p)
}
p <- .nlsLongitudinalPlot(
fit, form, df, groups, timeRange,
facetGroups, groupFill, virMaps, parsed_form
)
return(p)
}
#' @keywords internal
#' @noRd
.nlsStaticPlot <- function(fit, form, df, groups, timeRange,
facetGroups, groupFill, virMaps, parsed_form) {
x <- parsed_form$x
df <- parsed_form$data
#* `when implemented SE can be added here, see ?predict.nls`
summary_df <- as.data.frame(coef(summary(fit)))
colnames(summary_df) <- c("est", "err", "t", "p")
summary_df[[x]] <- rownames(summary_df)
summary_df[1, x] <- paste0(x, unique(df[[x]])[1])
summary_df[["est"]] <- cumsum(summary_df[["est"]])
#* `filter by groups if groups != NULL`
if (!is.null(groups)) {
summary_df <- summary_df[summary_df[[x]] %in% groups, ]
}
#* `facetGroups`
facet_layer <- NULL
if (facetGroups) {
facet_layer <- ggplot2::facet_wrap(stats::as.formula(paste0("~", x)))
}
#* `groupFill`
virVals <- unlist(lapply(
rep(virMaps, length.out = length(unique(summary_df[[x]]))),
function(pal) {
return(viridis::viridis(1, begin = 0.5, option = pal))
}
))
color_scale <- ggplot2::scale_color_manual(values = virVals)
if (!groupFill) {
color_scale <- ggplot2::scale_color_manual(values = rep("#CC4678FF", length(unique(df[[x]]))))
}
#* `plot`
plot <- ggplot(summary_df, ggplot2::aes(group = interaction(.data[[x]]))) +
facet_layer +
ggplot2::geom_errorbar(ggplot2::aes(
x = .data[[x]],
ymin = .data[["est"]] - 2 * .data[["err"]],
ymax = .data[["est"]] + 2 * .data[["err"]]
), width = 0.25) +
ggplot2::geom_point(ggplot2::aes(x = .data[[x]], y = .data[["est"]], color = .data[[x]]),
size = 4
) +
color_scale +
labs(x = x, y = as.character(form)[2]) +
pcv_theme()
return(plot)
}
#' @keywords internal
#' @noRd
.nlsLongitudinalPlot <- function(fit, form, df, groups, timeRange,
facetGroups, groupFill, virMaps, parsed_form) {
y <- parsed_form$y
x <- parsed_form$x
individual <- parsed_form$individual
if (individual == "dummyIndividual") {
individual <- NULL
}
group <- parsed_form$group
facetGroups <- .no_dummy_labels(group, facetGroups)
df <- parsed_form$data
df$group_interaction <- interaction(df[, group])
#* `filter by groups if groups != NULL`
if (!is.null(groups)) {
keep_index_df <- Reduce(intersect, lapply(seq_along(groups), function(i) {
grp <- groups[i]
return(which(df[[group[i]]] %in% grp))
}))
df <- df[keep_index_df, ]
}
#* `make new data if timerange is not NULL`
if (!is.null(timeRange)) {
new_data <- do.call(
expand.grid,
append(
list(timeRange),
c(lapply(group, function(grp) {
return(unique(df[[grp]]))
}))
)
)
colnames(new_data) <- c(x, group)
df <- df[df[[x]] >= min(timeRange) & df[[x]] <= max(timeRange), ]
} else {
new_data <- NULL
}
#* `add predictions`
preds <- data.frame(pred = stats::predict(fit, newdata = new_data))
keep <- which(!duplicated(preds$pred))
plotdf <- df[keep, ]
plotdf$pred <- preds[keep, "pred"]
#* `when implemented SE can be added here, see ?predict.nls`
#*
#* `layer for individual lines if formula was complete`
individual_lines <- list()
if (!is.null(individual)) {
individual_lines <- ggplot2::geom_line(
data = df, ggplot2::aes(
x = .data[[x]], y = .data[[y]],
group = interaction(
.data[[individual]],
.data[["group_interaction"]]
)
),
linewidth = 0.25, color = "gray40"
)
}
#* `facetGroups`
facet_layer <- NULL
if (facetGroups) {
facet_layer <- ggplot2::facet_wrap(stats::as.formula("~group_interaction"))
}
#* `groupFill`
if (groupFill) {
virVals <- unlist(lapply(
rep(virMaps, length.out = length(unique(df[["group_interaction"]]))),
function(pal) {
return(viridis::viridis(1, begin = 0.5, option = pal))
}
))
color_scale <- ggplot2::scale_color_manual(values = virVals)
} else {
color_scale <- ggplot2::scale_color_manual(values = rep(
"#CC4678FF",
length(unique(df[["group_interaction"]]))
))
}
#* `plot`
plot <- ggplot(plotdf, ggplot2::aes(group = interaction(.data[["group_interaction"]]))) +
facet_layer +
individual_lines +
ggplot2::geom_line(
ggplot2::aes(
x = .data[[x]], y = .data[["pred"]],
color = .data[["group_interaction"]]
),
linewidth = 0.7,
show.legend = groupFill
) + # using middle of plasma pal
color_scale +
labs(x = x, y = as.character(form)[2], color = group) +
pcv_theme()
return(plot)
}
#' @rdname nlsPlot
#' @examples
#' simdf <- growthSim("logistic",
#' n = 20, t = 25,
#' params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))
#' )
#' ss <- growthSS(
#' model = "gam", form = y ~ time | id / group,
#' df = simdf, start = NULL, type = "nls"
#' )
#' fit <- fitGrowth(ss)
#' gamPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)
#' gamPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:10)
#' ss <- growthSS(
#' model = "gam", form = y ~ time | group,
#' df = simdf, start = NULL, type = "nls"
#' )
#' fit <- fitGrowth(ss)
#' gamPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)
#'
#' @export
gamPlot <- function(fit, form, df = NULL, groups = NULL, timeRange = NULL, facetGroups = TRUE,
groupFill = FALSE, virMaps = c("plasma")) {
#* `get needed information from formula`
parsed_form <- .parsePcvrForm(form, df)
y <- parsed_form$y
x <- parsed_form$x
individual <- parsed_form$individual
if (individual == "dummyIndividual") {
individual <- NULL
}
group <- parsed_form$group
df <- parsed_form$data
df$group_interaction <- interaction(df[, group])
#* `filter by groups if groups != NULL`
if (!is.null(groups)) {
keep_index_df <- Reduce(intersect, lapply(seq_along(groups), function(i) {
grp <- groups[i]
return(which(df[[group[i]]] %in% grp))
}))
df <- df[keep_index_df, ]
}
#* `make new data if timerange is not NULL`
if (!is.null(timeRange)) {
new_data <- do.call(
expand.grid,
append(
list(timeRange),
c(lapply(group, function(grp) {
return(unique(df[[grp]]))
}))
)
)
colnames(new_data) <- c(x, group)
df <- df[df[[x]] >= min(timeRange) & df[[x]] <= max(timeRange), ]
} else {
# note this is the only change between this and nlsPlot
# this change is here because predict.nls sometimes acts strangely with the given data
# but predict.gam does not accept a NULL input for the newdata argument.
new_data <- df
}
#* `add predictions`
preds <- data.frame(pred = stats::predict(fit, newdata = new_data))
keep <- which(!duplicated(preds$pred))
plotdf <- df[keep, ]
plotdf$pred <- preds[keep, "pred"]
#* `when implemented SE can be added here, see ?predict.nls`
#*
#* `layer for individual lines if formula was complete`
individual_lines <- list()
if (!is.null(individual)) {
individual_lines <- ggplot2::geom_line(
data = df, ggplot2::aes(
x = .data[[x]], y = .data[[y]],
group = interaction(
.data[[individual]],
.data[["group_interaction"]]
)
),
linewidth = 0.25, color = "gray40"
)
}
#* `facetGroups`
facet_layer <- NULL
if (facetGroups) {
facet_layer <- ggplot2::facet_wrap(stats::as.formula("~group_interaction"))
}
#* `groupFill`
if (groupFill) {
virVals <- unlist(lapply(
rep(virMaps, length.out = length(unique(df[["group_interaction"]]))),
function(pal) {
return(viridis::viridis(1, begin = 0.5, option = pal))
}
))
color_scale <- ggplot2::scale_color_manual(values = virVals)
} else {
color_scale <- ggplot2::scale_color_manual(values = rep(
"#CC4678FF",
length(unique(df[["group_interaction"]]))
))
}
#* `plot`
plot <- ggplot(plotdf, ggplot2::aes(group = interaction(.data[["group_interaction"]]))) +
facet_layer +
individual_lines +
ggplot2::geom_line(
ggplot2::aes(
x = .data[[x]], y = .data[["pred"]],
color = .data[["group_interaction"]]
),
linewidth = 0.7,
show.legend = groupFill
) + # using middle of plasma pal
color_scale +
labs(x = x, y = as.character(form)[2], color = group) +
pcv_theme()
return(plot)
}
#' @rdname nlsPlot
#' @examples
#' simdf <- growthSim("logistic",
#' n = 20, t = 25,
#' params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))
#' )
#' ss <- growthSS(
#' model = "gam", form = y ~ time | id / group,
#' df = simdf, start = NULL, type = "nls"
#' )
#' fit <- fitGrowth(ss)
#' lmPlot(fit, form = ss$pcvrForm, df = ss$df)
#' @export
lmPlot <- function(fit, form, df = NULL, groups = NULL, timeRange = NULL, facetGroups = TRUE,
groupFill = FALSE, virMaps = c("plasma")) {
p <- nlsPlot(fit, form, df, groups, timeRange, facetGroups, groupFill, virMaps)
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.