Nothing
.lmfit <- function(response, offset) {
# Finds local gradient and subject weights
fit <- function(lp, leftout) {
if (!missing(leftout)) {
response <- response[!leftout]
offset <- offset[!leftout]
}
# The residuals
lp0 <- lp
if (!is.null(offset)) lp <- lp + offset
residuals <- drop(response - lp)
# The loglikelihood
ss <- sum(residuals * residuals)
if (missing(leftout)) n <- length(lp) else n <- sum(!leftout)
loglik <- (-n/2) * (log(2*pi/n) + 1 + log(ss + .Machine$double.xmin))
return(list(residuals = residuals, loglik = loglik, W = list("diagW" = numeric(), "P" = matrix()), lp = lp, lp0 = lp0, fitted = lp, nuisance = list(sigma2 = ss/n)))
}
# cross-validated likelihood
cvl <- function(lp, leftout) {
if (!is.null(offset)) lp <- lp + offset
residuals <- response - lp
sigma2 <- sum(residuals[!leftout] * residuals[!leftout]) / sum(!leftout)
ss <- sum(residuals[leftout] * residuals[leftout])
return(-(sum(leftout)/2) * log(2*pi*sigma2) - ss / (2*sigma2))
}
prediction <- function(lp, nuisance, which) {
if (!is.null(offset)) lp <- lp + offset[which]
out <- cbind(mu = lp, sigma2 = nuisance$sigma2)
out
}
return(list(fit = fit, cvl = cvl, prediction = prediction))
}
# mapping from the linear predictor lp to an actual prediction
.lmpredict <- function(lp, nuisance) {
out <- drop(cbind(mu = lp, sigma2 = nuisance$sigma2))
out
}
# merges predicted means and variances
.lmmerge <- function(predictions, groups) {
out <- matrix(0, sum(sapply(predictions, nrow)), 2)
for (i in 1:length(predictions)) {
out[groups==i,] <- predictions[[i]]
}
colnames(out) <- c("mu", "sigma2")
rownames(out) <- names(groups)
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.