Nothing
#' @title Check model for independence of residuals.
#' @name check_autocorrelation
#'
#' @description Check model for independence of residuals, i.e. for autocorrelation
#' of error terms.
#'
#' @param x A model object.
#' @param nsim Number of simulations for the Durbin-Watson-Test.
#' @param ... Currently not used.
#'
#' @return Invisibly returns the p-value of the test statistics. A p-value < 0.05
#' indicates autocorrelated residuals.
#'
#' @family functions to check model assumptions and and assess model quality
#'
#' @details Performs a Durbin-Watson-Test to check for autocorrelated residuals.
#' In case of autocorrelation, robust standard errors return more accurate
#' results for the estimates, or maybe a mixed model with error term for the
#' cluster groups should be used.
#'
#' @examples
#' m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
#' check_autocorrelation(m)
#' @export
check_autocorrelation <- function(x, ...) {
UseMethod("check_autocorrelation")
}
#' @rdname check_autocorrelation
#' @export
check_autocorrelation.default <- function(x, nsim = 1000, ...) {
.is_model_valid(x)
.residuals <- stats::residuals(x)
n <- length(.residuals)
dw <- .durbWats(.residuals)
X <- insight::get_modelmatrix(x)
mu <- stats::fitted(x)
Y <- matrix(sample(.residuals, n * nsim, replace = TRUE), n, nsim) + matrix(mu, n, nsim)
E <- stats::residuals(stats::lm(Y ~ X - 1))
DW <- rbind(apply(E, 2, .durbWats))
p <- (sum(dw < DW[1, ])) / nsim
p.val <- 2 * (min(p, 1 - p))
class(p.val) <- c("check_autocorrelation", "see_check_autocorrelation", class(p.val))
p.val
}
# methods ------------------------------
#' @export
plot.check_autocorrelation <- function(x, ...) {
insight::format_warning("There is currently no `plot()` method for `check_autocorrelation()`.")
}
#' @export
print.check_autocorrelation <- function(x, ...) {
if (x < 0.05) {
insight::print_color(
sprintf(
"Warning: Autocorrelated residuals detected (%s).",
insight::format_p(x)
),
"red"
)
} else {
insight::print_color(
sprintf(
"OK: Residuals appear to be independent and not autocorrelated (%s).",
insight::format_p(x)
),
"green"
)
}
invisible(x)
}
# utilities -------------------------------
.durbWats <- function(.residuals) {
n <- length(.residuals)
den <- sum(.residuals^2)
(sum((.residuals[2:n] - .residuals[1:(n - 1)])^2)) / den
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.