Nothing
#' Check model predictor for heterogeneity bias
#'
#' `check_heterogeneity_bias()` checks if model predictors or variables may
#' cause a heterogeneity bias, i.e. if variables have a within- and/or
#' between-effect (_Bell and Jones, 2015_).
#'
#' @param x A data frame or a mixed model object.
#' @param select Character vector (or formula) with names of variables to select
#' that should be checked. If `x` is a mixed model object, this argument
#' will be ignored.
#' @param by Character vector (or formula) with the name of the variable that
#' indicates the group- or cluster-ID. For cross-classified or nested designs,
#' `by` can also identify two or more variables as group- or cluster-IDs. If
#' the data is nested and should be treated as such, set `nested = TRUE`. Else,
#' if `by` defines two or more variables and `nested = FALSE`, a cross-classified
#' design is assumed. If `x` is a model object, this argument will be ignored.
#'
#' For nested designs, `by` can be:
#' - a character vector with the name of the variable that indicates the
#' levels, ordered from *highest* level to *lowest* (e.g.
#' `by = c("L4", "L3", "L2")`.
#' - a character vector with variable names in the format `by = "L4/L3/L2"`,
#' where the levels are separated by `/`.
#'
#' See also section _De-meaning for cross-classified designs_ and
#' _De-meaning for nested designs_ below.
#' @param nested Logical, if `TRUE`, the data is treated as nested. If `FALSE`,
#' the data is treated as cross-classified. Only applies if `by` contains more
#' than one variable.
#' @param group Deprecated. Use `by` instead.
#'
#' @seealso
#' For further details, read the vignette
#' <https://easystats.github.io/parameters/articles/demean.html> and also
#' see documentation for [`datawizard::demean()`].
#'
#' @references
#' - Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects
#' Modeling of Time-Series Cross-Sectional and Panel Data. Political Science
#' Research and Methods, 3(1), 133–153.
#'
#' @examples
#' data(iris)
#' iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
#' check_heterogeneity_bias(iris, select = c("Sepal.Length", "Petal.Length"), by = "ID")
#' @export
check_heterogeneity_bias <- function(x, select = NULL, by = NULL, nested = FALSE, group = NULL) {
insight::check_if_installed("datawizard", minimum_version = "0.12.0")
## TODO: deprecate later
if (!is.null(group)) {
insight::format_warning("Argument `group` is deprecated and will be removed in a future release. Please use `by` instead.") # nolint
by <- group
}
if (insight::is_model(x)) {
by <- insight::find_random(x, split_nested = TRUE, flatten = TRUE)
if (is.null(by)) {
insight::format_error("Model is no mixed model. Please provide a mixed model, or a data frame and arguments `select` and `by`.") # nolint
}
my_data <- insight::get_data(x, source = "mf", verbose = FALSE)
select <- insight::find_predictors(x, effects = "fixed", component = "conditional", flatten = TRUE)
} else {
if (inherits(select, "formula")) {
select <- all.vars(select)
}
if (inherits(by, "formula")) {
by <- all.vars(by)
}
my_data <- x
}
# for nested designs?
if (nested) {
# separate level-indicators with "/", as supported by datawizard
by <- paste(by, collapse = "/")
}
# create all combinations that should be checked
combinations <- expand.grid(select, by[1])
result <- Map(function(predictor, id) {
# demean predictor
d <- datawizard::demean(my_data, select = predictor, by = id, verbose = FALSE)
# get new names
within_name <- paste0(predictor, "_within")
# check if any within-variable differs from zero. if yes, we have
# a within-subject effect
if (any(abs(d[[within_name]]) > 1e-5)) {
predictor
} else {
NULL
}
}, as.character(combinations[[1]]), by)
out <- unlist(insight::compact_list(result), use.names = FALSE)
if (is.null(out)) {
message("No predictor found that could cause heterogeneity bias.")
return(invisible(NULL))
}
class(out) <- c("check_heterogeneity_bias", class(out))
out
}
#' @export
print.check_heterogeneity_bias <- function(x, ...) {
cat("Possible heterogeneity bias due to following predictors: ")
insight::print_color(toString(x), "red")
cat("\n")
invisible(x)
}
#' @keywords internal
.n_unique <- function(x, na.rm = TRUE) {
if (is.null(x)) {
return(0)
}
if (isTRUE(na.rm)) x <- x[!is.na(x)]
length(unique(x))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.