Nothing
test_that("model_performance various", {
skip_if_not_installed("AER")
skip_if_not_installed("ordinal")
skip_if_not_installed("betareg")
data("Affairs", package = "AER")
data("GasolineYield", package = "betareg")
data("wine", package = "ordinal")
data("CigarettesSW", package = "AER")
CigarettesSW$rprice <- with(CigarettesSW, price / cpi)
CigarettesSW$rincome <- with(CigarettesSW, income / population / cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax) / cpi)
m1 <- betareg::betareg(yield ~ batch + temp, data = GasolineYield)
m3 <- ordinal::clm(rating ~ temp * contact, data = wine)
m4 <- ordinal::clm2(rating ~ temp * contact, data = wine)
m5 <- AER::ivreg(
log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax / cpi),
data = CigarettesSW,
subset = year == "1995"
)
expect_equal(model_performance(m1, verbose = FALSE)$R2, 0.9617312, tolerance = 1e-4)
expect_equal(model_performance(m3, verbose = FALSE)$R2_Nagelkerke, 0.4042792, tolerance = 1e-4)
expect_equal(model_performance(m4, verbose = FALSE)$R2_Nagelkerke, 0.4042792, tolerance = 1e-4)
expect_equal(model_performance(m5, verbose = FALSE)$R2, 0.4294224, tolerance = 1e-4)
mp <- model_performance(m5)
ms <- summary(m5, diagnostics = TRUE)
expect_equal(mp$Sargan, ms$diagnostics["Sargan", 3])
expect_equal(mp$Sargan_p, ms$diagnostics["Sargan", 4])
expect_equal(mp$Wu_Hausman, ms$diagnostics["Wu-Hausman", 3])
expect_equal(mp$Wu_Hausman_p, ms$diagnostics["Wu-Hausman", 4])
expect_equal(mp$weak_instruments, ms$diagnostics["Weak instruments", 3])
expect_equal(mp$weak_instruments_p, ms$diagnostics["Weak instruments", 4])
})
# DirichletReg is currently orphaned
# test_that("model_performance (Dirichlet regression)", {
# skip_if_not_installed("DirichletReg")
# set.seed(123)
# data("ArcticLake", package = "DirichletReg")
#
# ALake <- ArcticLake
# ALake$Y <- suppressWarnings(DirichletReg::DR_data(ALake[, 1:3]))
#
# # fit a quadratic Dirichlet regression models ("common")
# res1 <- DirichletReg::DirichReg(Y ~ depth + I(depth^2), ALake)
# expect_equal(
# model_performance(res1),
# structure(
# list(
# AIC = -199.993722776335,
# BIC = -185.021667961168,
# R2_Nagelkerke = 0.0405982703444639,
# RMSE = 0.922951614921502
# ),
# class = c(
# "performance_model",
# "data.frame"
# ),
# row.names = 1L,
# r2 = list(names = "R2_Nagelkerke")
# ),
# tolerance = 1e-3
# )
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.