Description Usage Arguments Value Author(s) References See Also Examples
This function can be used to obtain the Workflow
object corresponding to an ID used in a performance estimation
experiment. This allows you for instance to check the full details of
the workflow corresponding to that ID (e.g. the function implementing
the workflow, the parameters and their values, etc.)
1 | getWorkflow(var, obj)
|
var |
The string with the workflow ID |
obj |
A |
A Workflow
object
Luis Torgo ltorgo@dcc.fc.up.pt
Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436
Workflow
,
runWorkflow
,
performanceEstimation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)
## running the estimation experiment
res <- performanceEstimation(
c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",
learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",
learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask("mse",method=CV(nReps=2,nFolds=5))
)
## Get the workflow corresponding to the ID svm.v2
getWorkflow("svm.v2",res)
## End(Not run)
|
Loading required package: lattice
Loading required package: grid
##### PERFORMANCE ESTIMATION USING CROSS VALIDATION #####
** PREDICTIVE TASK :: swiss.Infant.Mortality
++ MODEL/WORKFLOW :: svm.v1
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: svm.v2
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: svm.v3
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: svm.v4
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: rpartXse.v1
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: rpartXse.v2
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: rpartXse.v3
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
** PREDICTIVE TASK :: mtcars.mpg
++ MODEL/WORKFLOW :: svm.v1
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: svm.v2
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: svm.v3
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: svm.v4
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: rpartXse.v1
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: rpartXse.v2
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
++ MODEL/WORKFLOW :: rpartXse.v3
Task for estimating mse using
2 x 5 - Fold Cross Validation
Run with seed = 1234
Iteration :**********
Workflow Object:
Workflow ID :: svm.v2
Workflow Function :: standardWF
Parameter values:
learner.pars -> cost=10 gamma=0.01
learner -> svm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.